Difference between revisions of "User:Jon Awbrey/SANDBOX"
MyWikiBiz, Author Your Legacy — Wednesday November 05, 2025
Jump to navigationJump to searchJon Awbrey (talk | contribs) |
Jon Awbrey (talk | contribs) |
||
| Line 22: | Line 22: | ||
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
| − | |+ | + | |+ <math>\text{Table 3. Relational Composition}\!</math> |
|- | |- | ||
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | | ||
| Line 65: | Line 65: | ||
<br> | <br> | ||
| − | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width: | + | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:75%" |
| − | |+ | + | |+ <math>\text{Table 9. Composite of Triadic and Dyadic Relations}\!</math> |
|- | |- | ||
| style="border-right:1px solid black; border-bottom:1px solid black; width:20%" | | | style="border-right:1px solid black; border-bottom:1px solid black; width:20%" | | ||
| Line 114: | Line 114: | ||
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
| − | |+ | + | |+ <math>\text{Table 13. Another Brand of Composition}\!</math> |
|- | |- | ||
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | | ||
| Line 158: | Line 158: | ||
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
| − | |+ | + | |+ <math>\text{Table 15. Conjunction Via Composition}\!</math> |
|- | |- | ||
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | | ||
| Line 202: | Line 202: | ||
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
| − | |+ | + | |+ <math>\text{Table 18. Relational Composition}~ P \circ Q</math> |
|- | |- | ||
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | | ||
| Line 243: | Line 243: | ||
<br> | <br> | ||
| − | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width: | + | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
|+ <math>\text{Table 20. Arrow Equation:}~~ J(L(u, v)) = K(Ju, Jv)</math> | |+ <math>\text{Table 20. Arrow Equation:}~~ J(L(u, v)) = K(Ju, Jv)</math> | ||
|- | |- | ||
Revision as of 13:34, 24 April 2009
Logic of Relatives
Table 3. Relational Composition o---------o---------o---------o---------o | # !1! | !1! | !1! | o=========o=========o=========o=========o | L # X | Y | | o---------o---------o---------o---------o | M # | Y | Z | o---------o---------o---------o---------o | L o M # X | | Z | o---------o---------o---------o---------o |
| \(\mathit{1}\!\) | \(\mathit{1}\!\) | \(\mathit{1}\!\) | |
| \(L\!\) | \(X\!\) | \(Y\!\) | |
| \(M\!\) | \(Y\!\) | \(Z\!\) | |
| \(L \circ M\) | \(X\!\) | \(Z\!\) |
Table 9. Composite of Triadic and Dyadic Relations o---------o---------o---------o---------o---------o | # !1! | !1! | !1! | !1! | o=========o=========o=========o=========o=========o | G # T | U | | V | o---------o---------o---------o---------o---------o | L # | U | W | | o---------o---------o---------o---------o---------o | G o L # T | | W | V | o---------o---------o---------o---------o---------o |
| \(\mathit{1}\!\) | \(\mathit{1}\!\) | \(\mathit{1}\!\) | \(\mathit{1}\!\) | |
| \(G\!\) | \(T\!\) | \(U\!\) | \(V\!\) | |
| \(L\!\) | \(U\!\) | \(W\!\) | ||
| \(G \circ L\) | \(T\!\) | \(W\!\) | \(V\!\) |
Table 13. Another Brand of Composition o---------o---------o---------o---------o | # !1! | !1! | !1! | o=========o=========o=========o=========o | G # X | Y | Z | o---------o---------o---------o---------o | T # | Y | Z | o---------o---------o---------o---------o | G o T # X | | Z | o---------o---------o---------o---------o |
| \(\mathit{1}\!\) | \(\mathit{1}\!\) | \(\mathit{1}\!\) | |
| \(G\!\) | \(X\!\) | \(Y\!\) | \(Z\!\) |
| \(T\!\) | \(Y\!\) | \(Z\!\) | |
| \(G \circ T\) | \(X\!\) | \(Z\!\) |
Table 15. Conjunction Via Composition o---------o---------o---------o---------o | # !1! | !1! | !1! | o=========o=========o=========o=========o | L, # X | X | Y | o---------o---------o---------o---------o | S # | X | Y | o---------o---------o---------o---------o | L , S # X | | Y | o---------o---------o---------o---------o |
| \(\mathit{1}\!\) | \(\mathit{1}\!\) | \(\mathit{1}\!\) | |
| \(L,\!\) | \(X\!\) | \(X\!\) | \(Y\!\) |
| \(S\!\) | \(X\!\) | \(Y\!\) | |
| \(L,\!S\) | \(X\!\) | \(Y\!\) |
Table 18. Relational Composition P o Q o---------o---------o---------o---------o | # !1! | !1! | !1! | o=========o=========o=========o=========o | P # X | Y | | o---------o---------o---------o---------o | Q # | Y | Z | o---------o---------o---------o---------o | P o Q # X | | Z | o---------o---------o---------o---------o |
| \(\mathit{1}\!\) | \(\mathit{1}\!\) | \(\mathit{1}\!\) | |
| \(P\!\) | \(X\!\) | \(Y\!\) | |
| \(Q\!\) | \(Y\!\) | \(Z\!\) | |
| \(P \circ Q\) | \(X\!\) | \(Z\!\) |
Table 20. Arrow: J(L(u, v)) = K(Ju, Jv) o---------o---------o---------o---------o | # J | J | J | o=========o=========o=========o=========o | K # X | X | X | o---------o---------o---------o---------o | L # Y | Y | Y | o---------o---------o---------o---------o |
| \(J\!\) | \(J\!\) | \(J\!\) | |
| \(K\!\) | \(X\!\) | \(X\!\) | \(X\!\) |
| \(L\!\) | \(Y\!\) | \(Y\!\) | \(Y\!\) |
Grammar Stuff
| ||||||
| ||||||
|
| ||||||||||
| ||||||||||
| ||||||||||
|
| ||||||||||
| ||||||||||
| ||||||||||
|
Table Stuff
| \(F\!\) | \(F\!\) | \(F()\!\) | \(F\!\) |
| \(\underline{0}\) | \(F_0^{(0)}\!\) | \(\underline{0}\) | \((~)\) |
| \(\underline{1}\) | \(F_1^{(0)}\!\) | \(\underline{1}\) | \(((~))\) |
| \(F\!\) | \(F\!\) | \(F(x)\!\) | \(F\!\) | |
| \(F(\underline{1})\) | \(F(\underline{0})\) | |||
| \(F_0^{(1)}\!\) | \(F_{00}^{(1)}\!\) | \(\underline{0}\) | \(\underline{0}\) | \((~)\) |
| \(F_1^{(1)}\!\) | \(F_{01}^{(1)}\!\) | \(\underline{0}\) | \(\underline{1}\) | \((x)\!\) |
| \(F_2^{(1)}\!\) | \(F_{10}^{(1)}\!\) | \(\underline{1}\) | \(\underline{0}\) | \(x\!\) |
| \(F_3^{(1)}\!\) | \(F_{11}^{(1)}\!\) | \(\underline{1}\) | \(\underline{1}\) | \(((~))\) |
| \(F\!\) | \(F\!\) | \(F(x, y)\!\) | \(F\!\) | |||
| \(F(\underline{1}, \underline{1})\) | \(F(\underline{1}, \underline{0})\) | \(F(\underline{0}, \underline{1})\) | \(F(\underline{0}, \underline{0})\) | |||
| \(F_{0}^{(2)}\!\) | \(F_{0000}^{(2)}\!\) | \(\underline{0}\) | \(\underline{0}\) | \(\underline{0}\) | \(\underline{0}\) | \((~)\) |
| \(F_{1}^{(2)}\!\) | \(F_{0001}^{(2)}\!\) | \(\underline{0}\) | \(\underline{0}\) | \(\underline{0}\) | \(\underline{1}\) | \((x)(y)\!\) |
| \(F_{2}^{(2)}\!\) | \(F_{0010}^{(2)}\!\) | \(\underline{0}\) | \(\underline{0}\) | \(\underline{1}\) | \(\underline{0}\) | \((x) y\!\) |
| \(F_{3}^{(2)}\!\) | \(F_{0011}^{(2)}\!\) | \(\underline{0}\) | \(\underline{0}\) | \(\underline{1}\) | \(\underline{1}\) | \((x)\!\) |
| \(F_{4}^{(2)}\!\) | \(F_{0100}^{(2)}\!\) | \(\underline{0}\) | \(\underline{1}\) | \(\underline{0}\) | \(\underline{0}\) | \(x (y)\!\) |
| \(F_{5}^{(2)}\!\) | \(F_{0101}^{(2)}\!\) | \(\underline{0}\) | \(\underline{1}\) | \(\underline{0}\) | \(\underline{1}\) | \((y)\!\) |
| \(F_{6}^{(2)}\!\) | \(F_{0110}^{(2)}\!\) | \(\underline{0}\) | \(\underline{1}\) | \(\underline{1}\) | \(\underline{0}\) | \((x, y)\!\) |
| \(F_{7}^{(2)}\!\) | \(F_{0111}^{(2)}\!\) | \(\underline{0}\) | \(\underline{1}\) | \(\underline{1}\) | \(\underline{1}\) | \((x y)\!\) |
| \(F_{8}^{(2)}\!\) | \(F_{1000}^{(2)}\!\) | \(\underline{1}\) | \(\underline{0}\) | \(\underline{0}\) | \(\underline{0}\) | \(x y\!\) |
| \(F_{9}^{(2)}\!\) | \(F_{1001}^{(2)}\!\) | \(\underline{1}\) | \(\underline{0}\) | \(\underline{0}\) | \(\underline{1}\) | \(((x, y))\!\) |
| \(F_{10}^{(2)}\!\) | \(F_{1010}^{(2)}\!\) | \(\underline{1}\) | \(\underline{0}\) | \(\underline{1}\) | \(\underline{0}\) | \(y\!\) |
| \(F_{11}^{(2)}\!\) | \(F_{1011}^{(2)}\!\) | \(\underline{1}\) | \(\underline{0}\) | \(\underline{1}\) | \(\underline{1}\) | \((x (y))\!\) |
| \(F_{12}^{(2)}\!\) | \(F_{1100}^{(2)}\!\) | \(\underline{1}\) | \(\underline{1}\) | \(\underline{0}\) | \(\underline{0}\) | \(x\!\) |
| \(F_{13}^{(2)}\!\) | \(F_{1101}^{(2)}\!\) | \(\underline{1}\) | \(\underline{1}\) | \(\underline{0}\) | \(\underline{1}\) | \(((x)y)\!\) |
| \(F_{14}^{(2)}\!\) | \(F_{1110}^{(2)}\!\) | \(\underline{1}\) | \(\underline{1}\) | \(\underline{1}\) | \(\underline{0}\) | \(((x)(y))\!\) |
| \(F_{15}^{(2)}\!\) | \(F_{1111}^{(2)}\!\) | \(\underline{1}\) | \(\underline{1}\) | \(\underline{1}\) | \(\underline{1}\) | \(((~))\) |
| fi‹x, y› |
|
|
|
fj‹u, v› | ||||||
|
|
|
| A |
|
|
|
B | ||||||
|
|
|
|
|
| ||||||
|
|
|
|
|
|