Difference between revisions of "Directory:Jon Awbrey/Papers/Differential Propositional Calculus"
Jon Awbrey (talk | contribs) (→Special classes of propositions: add item) |
Jon Awbrey (talk | contribs) (revert to automatic section numbering) |
||
| (54 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
{{DISPLAYTITLE:Differential Propositional Calculus}} | {{DISPLAYTITLE:Differential Propositional Calculus}} | ||
| + | '''Author: [[User:Jon Awbrey|Jon Awbrey]]''' | ||
A '''differential propositional calculus''' is a [[propositional calculus]] extended by a set of terms for describing aspects of change and difference, for example, processes that take place in a [[universe of discourse]] or transformations that map a source universe into a target universe. | A '''differential propositional calculus''' is a [[propositional calculus]] extended by a set of terms for describing aspects of change and difference, for example, processes that take place in a [[universe of discourse]] or transformations that map a source universe into a target universe. | ||
| − | + | ==Casual Introduction== | |
| − | |||
| − | ==Casual | ||
Consider the situation represented by the venn diagram in Figure 1. | Consider the situation represented by the venn diagram in Figure 1. | ||
| − | + | {| align="center" border="0" cellspacing="10" style="text-align:center; width:100%" | |
| − | + | | [[Image:DiffPropCalc1.jpg|500px]] | |
| − | + | |- | |
| − | + | | height="20px" valign="top" | <math>\text{Figure 1.} ~~ \text{Local Habitations, And Names}\!</math> | |
| − | + | |} | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | | . | ||
| − | | | ||
| − | |||
| − | |||
| − | |||
| − | | | ||
| − | | | ||
| − | |||
| − | |||
| − | < | ||
| − | |||
| − | </ | ||
| − | The area of the rectangle represents a universe of discourse, <math>X.\!</math> This might be a population of individuals having various additional properties or it might be a collection of locations that various individuals occupy. The area of the | + | The area of the rectangle represents a universe of discourse, <math>X.\!</math> This might be a population of individuals having various additional properties or it might be a collection of locations that various individuals occupy. The area of the “circle” represents the individuals that have the property <math>q\!</math> or the locations that fall within the corresponding region <math>Q.\!</math> Four individuals, <math>a, b, c, d,\!</math> are singled out by name. It happens that <math>b\!</math> and <math>c\!</math> currently reside in region <math>Q\!</math> while <math>a\!</math> and <math>d\!</math> do not. |
Now consider the situation represented by the venn diagram in Figure 2. | Now consider the situation represented by the venn diagram in Figure 2. | ||
| − | + | {| align="center" border="0" cellspacing="10" style="text-align:center; width:100%" | |
| − | + | | [[Image:DiffPropCalc2.jpg|500px]] | |
| − | + | |- | |
| − | + | | height="20px" valign="top" | <math>\text{Figure 2.} ~~ \text{Same Names, Different Habitations}\!</math> | |
| − | + | |} | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | | . | ||
| − | | | ||
| − | |||
| − | |||
| − | |||
| − | | | ||
| − | | | ||
| − | |||
| − | |||
| − | < | ||
| − | |||
| − | </ | ||
| − | Figure 2 differs from Figure 1 solely in the circumstance that the object <math> | + | Figure 2 differs from Figure 1 solely in the circumstance that the object <math>c\!</math> is outside the region <math>Q\!</math> while the object <math>d\!</math> is inside the region <math>Q.\!</math> So far, there is nothing that says that our encountering these Figures in this order is other than purely accidental, but if we interpret the present sequence of frames as a “moving picture” representation of their natural order in a temporal process, then it would be natural to say that <math>a\!</math> and <math>b\!</math> have remained as they were with regard to quality <math>q\!</math> while <math>c\!</math> and <math>d\!</math> have changed their standings in that respect. In particular, <math>c\!</math> has moved from the region where <math>q\!</math> is <math>\mathrm{true}\!</math> to the region where <math>q\!</math> is <math>\mathrm{false}\!</math> while <math>d\!</math> has moved from the region where <math>q\!</math> is <math>\mathrm{false}\!</math> to the region where <math>q\!</math> is <math>\mathrm{true}.\!</math> |
| − | Figure | + | Figure 3 reprises the situation shown in Figure 1, but this time interpolates a new quality that is specifically tailored to account for the relation between Figure 1 and Figure 2. |
| − | + | {| align="center" border="0" cellspacing="10" style="text-align:center; width:100%" | |
| − | + | | [[Image:DiffPropCalc3.jpg|500px]] | |
| − | + | |- | |
| − | + | | height="20px" valign="top" | <math>\text{Figure 3.} ~~ \text{Back, To The Future}\!</math> | |
| − | + | |} | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | | . | ||
| − | | | ||
| − | |||
| − | |||
| − | |||
| − | | | ||
| − | |||
| − | |||
| − | |||
| − | < | ||
| − | |||
| − | </ | ||
| − | This new quality, <math>\ | + | This new quality, <math>\mathrm{d}q,\!</math> is an example of a ''differential quality'', since its absence or presence qualifies the absence or presence of change occurring in another quality. As with any other quality, it is represented in the venn diagram by means of a “circle” that distinguishes two halves of the universe of discourse, in this case, the portions of <math>X\!</math> outside and inside the region <math>\mathrm{d}Q.\!</math> |
| − | Figure 1 represents a universe of discourse, <math>X,\!</math> together with a basis of discussion, <math>\{ q \},\!</math> for expressing propositions about the contents of that universe. Once the quality <math>q\!</math> is given a name, say, the symbol | + | Figure 1 represents a universe of discourse, <math>X,\!</math> together with a basis of discussion, <math>\{ q \},\!</math> for expressing propositions about the contents of that universe. Once the quality <math>q\!</math> is given a name, say, the symbol <math>{}^{\backprime\backprime} q {}^{\prime\prime},\!</math> we have the basis for a formal language that is specifically cut out for discussing <math>X\!</math> in terms of <math>q,\!</math> and this formal language is more formally known as the ''propositional calculus'' with alphabet <math>\{ {}^{\backprime\backprime} q {}^{\prime\prime} \}.\!</math> |
| − | In the context marked by <math>X\!</math> and <math>\{ q \}\!</math> there are but four different pieces of information that can be expressed in the corresponding propositional calculus, namely, the propositions: <math>false, | + | In the context marked by <math>X\!</math> and <math>\{ q \}\!</math> there are but four different pieces of information that can be expressed in the corresponding propositional calculus, namely, the propositions: <math>\mathrm{false}, ~ \lnot q, ~ q, ~ \mathrm{true}.\!</math> Referring to the sample of points in Figure 1, the constant proposition <math>\mathrm{false}\!</math> holds of no points, the proposition <math>\lnot q\!</math> holds of <math>a\!</math> and <math>d,\!</math> the proposition <math>q\!</math> holds of <math>b\!</math> and <math>c,\!</math> and the constant proposition <math>\mathrm{true}\!</math> holds of all points in the sample. |
| − | Figure | + | Figure 3 preserves the same universe of discourse and extends the basis of discussion to a set of two qualities, <math>\{ q, \mathrm{d}q \}.\!</math> In parallel fashion, the initial propositional calculus is extended by means of the enlarged alphabet, <math>\{ {}^{\backprime\backprime} q {}^{\prime\prime}, {}^{\backprime\backprime} \mathrm{d}q {}^{\prime\prime} \}.\!</math> Any propositional calculus over two basic propositions allows for the expression of 16 propositions all together. Just by way of salient examples in the present setting, we can pick out the most informative propositions that apply to each of our sample points. Using overlines to express logical negation, these are given as follows: |
| − | :* <p><math>\overline{q} | + | :* <p><math>\overline{q} ~ \overline{\mathrm{d}q}\!</math> describes <math>a\!</math></p> |
| − | :* <p><math>\overline{q}\ | + | :* <p><math>\overline{q} ~ \mathrm{d}q\!</math> describes <math>d\!</math></p> |
| − | :* <p><math>q | + | :* <p><math>q ~ \overline{\mathrm{d}q}\!</math> describes <math>b\!</math></p> |
| − | :* <p><math>q\ | + | :* <p><math>q ~ \mathrm{d}q\!</math> describes <math>c\!</math></p> |
| − | Table | + | Table 4 exhibits the rules of inference that give the differential quality <math>\mathrm{d}q\!</math> its meaning in practice. |
| − | {| align="center" border="1" cellpadding=" | + | <br> |
| − | |+ | + | |
| + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:center; width:60%" | ||
| + | |+ style="height:30px" | <math>\text{Table 4.} ~~ \text{Differential Inference Rules}\!</math> | ||
| | | | ||
| − | { | + | <math>\begin{matrix} |
| − | + | \text{From} & \overline{q} | |
| − | + | & \text{and} & \overline{\mathrm{d}q} | |
| − | + | & \text{infer} & \overline{q} & \text{next.} | |
| − | + | \\[8pt] | |
| − | + | \text{From} & \overline{q} | |
| − | + | & \text{and} & \mathrm{d}q | |
| − | + | & \text{infer} & q & \text{next.} | |
| − | + | \\[8pt] | |
| − | + | \text{From} & q | |
| − | + | & \text{and} & \overline{\mathrm{d}q} | |
| − | + | & \text{infer} & q & \text{next.} | |
| − | + | \\[8pt] | |
| − | + | \text{From} & q | |
| − | + | & \text{and} & \mathrm{d}q | |
| − | + | & \text{infer} & \overline{q} & \text{next.} | |
| − | + | \end{matrix}</math> | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
|} | |} | ||
| + | |||
<br> | <br> | ||
| − | + | ==Cactus Calculus== | |
| − | + | Table 5 outlines a syntax for propositional calculus based on two types of logical connectives, both of variable <math>k\!</math>-ary scope. | |
| − | + | * A bracketed list of propositional expressions in the form <math>\texttt{(} e_1, e_2, \ldots, e_{k-1}, e_k \texttt{)}\!</math> indicates that exactly one of the propositions <math>e_1, e_2, \ldots, e_{k-1}, e_k\!</math> is false. | |
| − | + | * A concatenation of propositional expressions in the form <math>e_1 ~ e_2 ~ \ldots ~ e_{k-1} ~ e_k\!</math> indicates that all of the propositions <math>e_1, e_2, \ldots, e_{k-1}, e_k\!</math> are true, in other words, that their [[logical conjunction]] is true. | |
| − | + | <br> | |
| − | == | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:75%" |
| − | + | |+ style="height:30px" | <math>\text{Table 5.} ~~ \text{Syntax and Semantics of a Calculus for Propositional Logic}\!</math> | |
| − | + | |- style="height:40px; background:ghostwhite" | |
| − | + | | <math>\text{Expression}~\!</math> | |
| − | = | + | | <math>\text{Interpretation}\!</math> |
| − | + | | <math>\text{Other Notations}\!</math> | |
| − | + | |- | |
| − | + | | | |
| − | + | | <math>\text{True}\!</math> | |
| − | + | | <math>1\!</math> | |
| − | + | |- | |
| − | + | | <math>\texttt{(~)}\!</math> | |
| − | + | | <math>\text{False}\!</math> | |
| − | + | | <math>0\!</math> | |
| − | + | |- | |
| − | + | | <math>x\!</math> | |
| − | + | | <math>x\!</math> | |
| − | + | | <math>x\!</math> | |
| − | + | |- | |
| + | | <math>\texttt{(} x \texttt{)}\!</math> | ||
| + | | <math>\text{Not}~ x\!</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | x' | ||
| + | \\ | ||
| + | \tilde{x} | ||
| + | \\ | ||
| + | \lnot x | ||
| + | \end{matrix}\!</math> | ||
| + | |- | ||
| + | | <math>x~y~z\!</math> | ||
| + | | <math>x ~\text{and}~ y ~\text{and}~ z\!</math> | ||
| + | | <math>x \land y \land z\!</math> | ||
|- | |- | ||
| − | | <math>\ | + | | <math>\texttt{((} x \texttt{)(} y \texttt{)(} z \texttt{))}\!</math> |
| − | + | | <math>x ~\text{or}~ y ~\text{or}~ z\!</math> | |
| − | + | | <math>x \lor y \lor z\!</math> | |
| − | | <math> | ||
|- | |- | ||
| − | | <math>\ | + | | <math>\texttt{(} x ~ \texttt{(} y \texttt{))}\!</math> |
| − | | <math>\{ | + | | |
| − | + | <math>\begin{matrix} | |
| − | | <math> | + | x ~\text{implies}~ y |
| + | \\ | ||
| + | \mathrm{If}~ x ~\text{then}~ y | ||
| + | \end{matrix}</math> | ||
| + | | <math>x \Rightarrow y\!</math> | ||
|- | |- | ||
| − | | <math> | + | | <math>\texttt{(} x \texttt{,} y \texttt{)}\!</math> |
| − | | <math>\{ \ | + | | |
| − | | | + | <math>\begin{matrix} |
| − | + | x ~\text{not equal to}~ y | |
| + | \\ | ||
| + | x ~\text{exclusive or}~ y | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | x \ne y | ||
| + | \\ | ||
| + | x + y | ||
| + | \end{matrix}</math> | ||
|- | |- | ||
| − | | <math> | + | | <math>\texttt{((} x \texttt{,} y \texttt{))}\!</math> |
| − | + | | | |
| − | <math>\ | + | <math>\begin{matrix} |
| − | + | x ~\text{is equal to}~ y | |
| − | + | \\ | |
| − | + | x ~\text{if and only if}~ y | |
| − | | | + | \end{matrix}</math> |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | x = y | |
| − | + | \\ | |
| − | + | x \Leftrightarrow y | |
| + | \end{matrix}</math> | ||
|- | |- | ||
| − | | <math> | + | | <math>\texttt{(} x \texttt{,} y \texttt{,} z \texttt{)}\!</math> |
| − | | <math> | + | | |
| − | | | + | <math>\begin{matrix} |
| − | + | \text{Just one of} | |
| + | \\ | ||
| + | x, y, z | ||
| + | \\ | ||
| + | \text{is false}. | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | x'y~z~ & \lor | ||
| + | \\ | ||
| + | x~y'z~ & \lor | ||
| + | \\ | ||
| + | x~y~z' & | ||
| + | \end{matrix}</math> | ||
|- | |- | ||
| − | | <math> | + | | <math>\texttt{((} x \texttt{),(} y \texttt{),(} z \texttt{))}\!</math> |
| − | | <math> | + | | |
| − | | | + | <math>\begin{matrix} |
| − | + | \text{Just one of} | |
| + | \\ | ||
| + | x, y, z | ||
| + | \\ | ||
| + | \text{is true}. | ||
| + | \\ | ||
| + | & | ||
| + | \\ | ||
| + | \text{Partition all} | ||
| + | \\ | ||
| + | \text{into}~ x, y, z. | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | x~y'z' & \lor | ||
| + | \\ | ||
| + | x'y~z' & \lor | ||
| + | \\ | ||
| + | x'y'z~ & | ||
| + | \end{matrix}</math> | ||
|- | |- | ||
| − | | | + | | |
| − | + | <math>\begin{matrix} | |
| − | + | \texttt{((} x \texttt{,} y \texttt{),} z \texttt{)} | |
| − | + | \\ | |
| − | + | & | |
| − | + | \\ | |
| − | | | + | \texttt{(} x \texttt{,(} y \texttt{,} z \texttt{))} |
| − | + | \end{matrix}\!</math> | |
| − | <math>\{ | + | | |
| − | + | <math>\begin{matrix} | |
| − | <math> | + | \text{Oddly many of} |
| − | + | \\ | |
| − | + | x, y, z | |
| + | \\ | ||
| + | \text{are true}. | ||
| + | \end{matrix}\!</math> | ||
| + | | | ||
| + | <p><math>x + y + z\!</math></p> | ||
<br> | <br> | ||
| + | <p><math>\begin{matrix} | ||
| + | x~y~z~ & \lor | ||
| + | \\ | ||
| + | x~y'z' & \lor | ||
| + | \\ | ||
| + | x'y~z' & \lor | ||
| + | \\ | ||
| + | x'y'z~ & | ||
| + | \end{matrix}\!</math></p> | ||
| + | |- | ||
| + | | <math>\texttt{(} w \texttt{,(} x \texttt{),(} y \texttt{),(} z \texttt{))}\!</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \text{Partition}~ w | ||
| + | \\ | ||
| + | \text{into}~ x, y, z. | ||
| + | \\ | ||
| + | & | ||
| + | \\ | ||
| + | \text{Genus}~ w ~\text{comprises} | ||
| + | \\ | ||
| + | \text{species}~ x, y, z. | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | w'x'y'z' & \lor | ||
| + | \\ | ||
| + | w~x~y'z' & \lor | ||
| + | \\ | ||
| + | w~x'y~z' & \lor | ||
| + | \\ | ||
| + | w~x'y'z~ & | ||
| + | \end{matrix}</math> | ||
| + | |} | ||
| − | + | <br> | |
| − | |||
| − | |||
| − | + | All other propositional connectives can be obtained through combinations of these two forms. Strictly speaking, the concatenation form is dispensable in light of the bracket form, but it is convenient to maintain it as an abbreviation for more complicated bracket expressions. While working with expressions solely in propositional calculus, it is easiest to use plain parentheses for logical connectives. In contexts where parentheses are needed for other purposes “teletype” parentheses <math>\texttt{(} \ldots \texttt{)}\!</math> or barred parentheses <math>(\!| \ldots |\!)</math> may be used for logical operators. | |
| − | + | The briefest expression for logical truth is the empty word, abstractly denoted <math>\boldsymbol\varepsilon\!</math> or <math>\boldsymbol\lambda\!</math> in formal languages, where it forms the identity element for concatenation. It may be given visible expression in this context by means of the logically equivalent form <math>\texttt{((~))},\!</math> or, especially if operating in an algebraic context, by a simple <math>1.\!</math> Also when working in an algebraic mode, the plus sign <math>{+}\!</math> may be used for [[exclusive disjunction]]. For example, we have the following paraphrases of algebraic expressions: | |
| − | : | + | {| align="center" cellpadding="6" style="text-align:center" |
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | x + y ~=~ \texttt{(} x, y \texttt{)} | ||
| + | \\[6pt] | ||
| + | x + y + z ~=~ \texttt{((} x, y \texttt{)}, z \texttt{)} ~=~ \texttt{(} x, \texttt{(} y, z \texttt{))} | ||
| + | \end{matrix}</math> | ||
| + | |} | ||
| − | + | It is important to note that the last expressions are not equivalent to the triple bracket <math>\texttt{(} x, y, z \texttt{)}.\!</math> | |
| − | + | For more information about this syntax for propositional calculus, see the entries on [[minimal negation operator]]s, [[zeroth order logic]], and [[Differential Propositional Calculus#Table A1. Propositional Forms on Two Variables|Table A1 in Appendix 1]]. | |
| − | == | + | ==Formal Development== |
| − | + | The preceding discussion outlined the ideas leading to the differential extension of propositional logic. The next task is to lay out the concepts and terminology that are needed to describe various orders of differential propositional calculi. | |
| − | + | ===Elementary Notions=== | |
| − | + | Logical description of a universe of discourse begins with a set of logical signs. For the sake of simplicity in a first approach, assume that these logical signs are collected in the form of a finite alphabet, <math>\mathfrak{A} = \{ {}^{\backprime\backprime} a_1 {}^{\prime\prime}, \ldots, {}^{\backprime\backprime} a_n {}^{\prime\prime} \}.\!</math> Each of these signs is interpreted as denoting a logical feature, for instance, a property that objects in the universe of discourse may have or a proposition about objects in the universe of discourse. Corresponding to the alphabet <math>\mathfrak{A}\!</math> there is then a set of logical features, <math>\mathcal{A} = \{ a_1, \ldots, a_n \}.\!</math> | |
| − | + | A set of logical features, <math>\mathcal{A} = \{ a_1, \ldots, a_n \},\!</math> affords a basis for generating an <math>n\!</math>-dimensional universe of discourse, written <math>A^\bullet = [ \mathcal{A} ] = [ a_1, \ldots, a_n ].\!</math> It is useful to consider a universe of discourse as a categorical object that incorporates both the set of points <math>A = \langle a_1, \ldots, a_n \rangle\!</math> and the set of propositions <math>A^\uparrow = \{ f : A \to \mathbb{B} \}\!</math> that are implicit with the ordinary picture of a venn diagram on <math>n\!</math> features. Accordingly, the universe of discourse <math>A^\bullet\!</math> may be regarded as an ordered pair <math>(A, A^\uparrow)\!</math> having the type <math>(\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B})),\!</math> and this last type designation may be abbreviated as <math>\mathbb{B}^n\ +\!\to \mathbb{B},\!</math> or even more succinctly as <math>[ \mathbb{B}^n ].\!</math> For convenience, the data type of a finite set on <math>n\!</math> elements may be indicated by either one of the equivalent notations, <math>[n]\!</math> or <math>\mathbf{n}.\!</math> | |
| − | + | Table 6 summarizes the notations that are needed to describe ordinary propositional calculi in a systematic fashion. | |
| − | + | <br> | |
| − | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:75%" | |
| − | + | |+ style="height:30px" | <math>\text{Table 6.} ~~ \text{Propositional Calculus : Basic Notation}\!</math> | |
| − | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align: | + | |- style="height:40px; background:ghostwhite" |
| − | |+ | + | | <math>\text{Symbol}\!</math> |
| − | |- style="background:ghostwhite" | + | | <math>\text{Notation}\!</math> |
| − | ! | + | | <math>\text{Description}\!</math> |
| − | ! | + | | <math>\text{Type}\!</math> |
| − | ! | ||
| − | ! | ||
|- | |- | ||
| − | | <math> | + | | <math>\mathfrak{A}\!</math> |
| − | | <math>\ | + | | <math>\{ {}^{\backprime\backprime} a_1 {}^{\prime\prime}, \ldots, {}^{\backprime\backprime} a_n {}^{\prime\prime} \}\!</math> |
| − | + | | <math>\text{Alphabet}\!</math> | |
| − | + | | <math>[n] = \mathbf{n}\!</math> | |
| − | |||
| − | | <math>[n] = \mathbf{n}</math> | ||
|- | |- | ||
| − | | <math> | + | | <math>\mathcal{A}\!</math> |
| − | | <math>\{ | + | | <math>\{ a_1, \ldots, a_n \}\!</math> |
| − | | | + | | <math>\text{Basis}\!</math> |
| − | + | | <math>[n] = \mathbf{n}\!</math> | |
| − | |||
| − | | <math>[n] = \mathbf{n}</math> | ||
|- | |- | ||
| − | | <math>\ | + | | <math>A_i\!</math> |
| − | | <math>\{ \ | + | | <math>\{ \texttt{(} a_i \texttt{)}, a_i \}\!</math> |
| − | | | + | | <math>\text{Dimension}~ i\!</math> |
| − | + | | <math>\mathbb{B}\!</math> | |
| − | | <math>\mathbb{ | ||
|- | |- | ||
| − | | <math>\ | + | | <math>A\!</math> |
| − | | <math>\ | + | | |
| − | + | <math>\begin{matrix} | |
| − | + | \langle \mathcal{A} \rangle | |
| − | + | \\[2pt] | |
| − | + | \langle a_1, \ldots, a_n \rangle | |
| − | | | + | \\[2pt] |
| − | + | \{ (a_1, \ldots, a_n) \} | |
| − | Set of | + | \\[2pt] |
| − | + | A_1 \times \ldots \times A_n | |
| − | + | \\[2pt] | |
| − | + | \textstyle \prod_{i=1}^n A_i | |
| − | | <math>\mathbb{ | + | \end{matrix}</math> |
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \text{Set of cells}, | ||
| + | \\[2pt] | ||
| + | \text{coordinate tuples}, | ||
| + | \\[2pt] | ||
| + | \text{points, or vectors} | ||
| + | \\[2pt] | ||
| + | \text{in the universe} | ||
| + | \\[2pt] | ||
| + | \text{of discourse} | ||
| + | \end{matrix}</math> | ||
| + | | <math>\mathbb{B}^n\!</math> | ||
|- | |- | ||
| − | | <math> | + | | <math>A^*\!</math> |
| − | | <math>(\ | + | | <math>(\mathrm{hom} : A \to \mathbb{B})\!</math> |
| − | | | + | | <math>\text{Linear functions}\!</math> |
| − | + | | <math>(\mathbb{B}^n)^* \cong \mathbb{B}^n\!</math> | |
| − | | <math>(\mathbb{ | ||
|- | |- | ||
| − | | <math> | + | | <math>A^\uparrow\!</math> |
| − | | <math>( | + | | <math>(A \to \mathbb{B})\!</math> |
| − | | | + | | <math>\text{Boolean functions}\!</math> |
| − | + | | <math>\mathbb{B}^n \to \mathbb{B}\!</math> | |
| − | | <math>\mathbb{ | ||
|- | |- | ||
| − | | <math> | + | | <math>A^\bullet\!</math> |
| − | | <math> | + | | |
| − | + | <math>\begin{matrix} | |
| − | + | [\mathcal{A}] | |
| − | + | \\[2pt] | |
| − | + | (A, A^\uparrow) | |
| − | | | + | \\[2pt] |
| − | + | (A ~+\!\to \mathbb{B}) | |
| − | based on the | + | \\[2pt] |
| − | + | (A, (A \to \mathbb{B})) | |
| − | + | \\[2pt] | |
| − | | <math>(\mathbb{ | + | [a_1, \ldots, a_n] |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| + | <math>\begin{matrix} | ||
| + | \text{Universe of discourse} | ||
| + | \\[2pt] | ||
| + | \text{based on the features} | ||
| + | \\[2pt] | ||
| + | \{ a_1, \ldots, a_n \} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B})) | ||
| + | \\[2pt] | ||
| + | (\mathbb{B}^n ~+\!\to \mathbb{B}) | ||
| + | \\[2pt] | ||
| + | [\mathbb{B}^n] | ||
| + | \end{matrix}</math> | ||
|} | |} | ||
| + | |||
<br> | <br> | ||
| − | + | ===Special Classes of Propositions=== | |
| − | + | A ''basic proposition'', ''coordinate proposition'', or ''simple proposition'' in the universe of discourse <math>[a_1, \ldots, a_n]</math> is one of the propositions in the set <math>\{ a_1, \ldots, a_n \}.</math> | |
| − | ''' | + | Among the <math>2^{2^n}</math> propositions in <math>[a_1, \ldots, a_n]</math> are several families of <math>2^n\!</math> propositions each that take on special forms with respect to the basis <math>\{ a_1, \ldots, a_n \}.</math> Three of these families are especially prominent in the present context, the ''linear'', the ''positive'', and the ''singular'' propositions. Each family is naturally parameterized by the coordinate <math>n\!</math>-tuples in <math>\mathbb{B}^n</math> and falls into <math>n + 1\!</math> ranks, with a binomial coefficient <math>\tbinom{n}{k}</math> giving the number of propositions that have rank or weight <math>k.\!</math> |
| − | + | <ul> | |
| − | < | + | <li> |
| − | + | <p>The ''linear propositions'', <math>\{ \ell : \mathbb{B}^n \to \mathbb{B} \} = (\mathbb{B}^n \xrightarrow{\ell} \mathbb{B}),\!</math> may be written as sums:</p> | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | < | ||
| − | |||
| − | </ | ||
| − | + | {| align="center" cellspacing="8" width="90%" | |
| + | | | ||
| + | <math>\sum_{i=1}^n e_i ~=~ e_1 + \ldots + e_n | ||
| + | ~\text{where}~ | ||
| + | \left\{\begin{matrix} e_i = a_i \\ \text{or} \\ e_i = 0 \end{matrix}\right\} | ||
| + | ~\text{for}~ i = 1 ~\text{to}~ n.\!</math> | ||
| + | |} | ||
| + | </li> | ||
| − | + | <li> | |
| + | <p>The ''positive propositions'', <math>\{ p : \mathbb{B}^n \to \mathbb{B} \} = (\mathbb{B}^n \xrightarrow{p} \mathbb{B}),\!</math> may be written as products:</p> | ||
| − | + | {| align="center" cellspacing="8" width="90%" | |
| + | | | ||
| + | <math>\prod_{i=1}^n e_i ~=~ e_1 \cdot \ldots \cdot e_n | ||
| + | ~\text{where}~ | ||
| + | \left\{\begin{matrix} e_i = a_i \\ \text{or} \\ e_i = 1 \end{matrix}\right\} | ||
| + | ~\text{for}~ i = 1 ~\text{to}~ n.\!</math> | ||
| + | |} | ||
| + | </li> | ||
| − | + | <li> | |
| + | <p>The ''singular propositions'', <math>\{ \mathbf{x} : \mathbb{B}^n \to \mathbb{B} \} = (\mathbb{B}^n \xrightarrow{s} \mathbb{B}),\!</math> may be written as products:</p> | ||
| − | + | {| align="center" cellspacing="8" width="90%" | |
| + | | | ||
| + | <math>\prod_{i=1}^n e_i ~=~ e_1 \cdot \ldots \cdot e_n | ||
| + | ~\text{where}~ | ||
| + | \left\{\begin{matrix} e_i = a_i \\ \text{or} \\ e_i = \texttt{(} a_i \texttt{)} \end{matrix}\right\} | ||
| + | ~\text{for}~ i = 1 ~\text{to}~ n.\!</math> | ||
| + | |} | ||
| + | </li> | ||
| − | + | </ul> | |
| − | + | In each case the rank <math>k\!</math> ranges from <math>0\!</math> to <math>n\!</math> and counts the number of positive appearances of the coordinate propositions <math>a_1, \ldots, a_n\!</math> in the resulting expression. For example, for <math>n = 3,~\!</math> the linear proposition of rank <math>0\!</math> is <math>0,\!</math> the positive proposition of rank <math>0\!</math> is <math>1,\!</math> and the singular proposition of rank <math>0\!</math> is <math>\texttt{(} a_1 \texttt{)} \texttt{(} a_2 \texttt{)} \texttt{(} a_3 \texttt{)}.\!</math> | |
| − | + | The basic propositions <math>a_i : \mathbb{B}^n \to \mathbb{B}\!</math> are both linear and positive. So these two kinds of propositions, the linear and the positive, may be viewed as two different ways of generalizing the class of basic propositions. | |
| − | + | Finally, it is important to note that all of the above distinctions are relative to the choice of a particular logical basis <math>\mathcal{A} = \{ a_1, \ldots, a_n \}.\!</math> For example, a singular proposition with respect to the basis <math>\mathcal{A}\!</math> will not remain singular if <math>\mathcal{A}\!</math> is extended by a number of new and independent features. Even if one keeps to the original set of pairwise options <math>\{ a_i \} \cup \{ \texttt{(} a_i \texttt{)} \}\!</math> to pick out a new basis, the sets of linear propositions and positive propositions are both determined by the choice of basic propositions, and this whole determination is tantamount to the purely conventional choice of a cell as origin. | |
| − | = | + | ===Differential Extensions=== |
| − | + | An initial universe of discourse, <math>A^\bullet,</math> supplies the groundwork for any number of further extensions, beginning with the ''first order differential extension'', <math>\mathrm{E}A^\bullet.</math> The construction of <math>\mathrm{E}A^\bullet</math> can be described in the following stages: | |
| − | + | <ul> | |
| − | < | + | <li> |
| − | <p>The | + | <p>The initial alphabet, <math>\mathfrak{A} = \{ {}^{\backprime\backprime} a_1 {}^{\prime\prime}, \ldots, {}^{\backprime\backprime} a_n {}^{\prime\prime} \},\!</math> is extended by a ''first order differential alphabet'', <math>\mathrm{d}\mathfrak{A} = \{ {}^{\backprime\backprime} \mathrm{d}a_1 {}^{\prime\prime}, \ldots, {}^{\backprime\backprime} \mathrm{d}a_n {}^{\prime\prime} \},\!</math> resulting in a ''first order extended alphabet'', <math>\mathrm{E}\mathfrak{A},</math> defined as follows:</p> |
| − | < | + | {| align="center" cellspacing="8" width="90%" |
| − | </ | + | | |
| + | <math>\mathrm{E}\mathfrak{A} ~=~ \mathfrak{A} ~\cup~ \mathrm{d}\mathfrak{A} ~=~ \{ {}^{\backprime\backprime} a_1 {}^{\prime\prime}, \ldots, {}^{\backprime\backprime} a_n {}^{\prime\prime}, {}^{\backprime\backprime} \mathrm{d}a_1 {}^{\prime\prime}, \ldots, {}^{\backprime\backprime} \mathrm{d}a_n {}^{\prime\prime} \}.\!</math> | ||
| + | |} | ||
| + | </li> | ||
| − | + | <li> | |
| + | <p>The initial basis, <math>\mathcal{A} = \{ a_1, \ldots, a_n \},\!</math> is extended by a ''first order differential basis'', <math>\mathrm{d}\mathcal{A} = \{ \mathrm{d}a_1, \ldots, \mathrm{d}a_n \},\!</math> resulting in a ''first order extended basis'', <math>\mathrm{E}\mathcal{A},\!</math> defined as follows:</p> | ||
| − | + | {| align="center" cellspacing="8" width="90%" | |
| + | | | ||
| + | <math>\mathrm{E}\mathcal{A} ~=~ \mathcal{A} ~\cup~ \mathrm{d}\mathcal{A} ~=~ \{ a_1, \ldots, a_n, \mathrm{d}a_1, \ldots, \mathrm{d}a_n \}.\!</math> | ||
| + | |} | ||
| + | </li> | ||
| − | < | + | <li> |
| − | + | <p>The initial space, <math>A = \langle a_1, \ldots, a_n \rangle,\!</math> is extended by a ''first order differential space'' or ''tangent space'', <math>\mathrm{d}A = \langle \mathrm{d}a_1, \ldots, \mathrm{d}a_n \rangle,\!</math> at each point of <math>A,\!</math> resulting in a ''first order extended space'' or ''tangent bundle space'', <math>\mathrm{E}A,\!</math> defined as follows:</p> | |
| − | </ | ||
| − | + | {| align="center" cellspacing="8" width="90%" | |
| + | | | ||
| + | <math>\mathrm{E}A ~=~ A ~\times~ \mathrm{d}A ~=~ \langle \mathrm{E}\mathcal{A} \rangle ~=~ \langle \mathcal{A} \cup \mathrm{d}\mathcal{A} \rangle ~=~ \langle a_1, \ldots, a_n, \mathrm{d}a_1, \ldots, \mathrm{d}a_n \rangle.\!</math> | ||
| + | |} | ||
| + | </li> | ||
| − | < | + | <li> |
| − | + | <p>Finally, the initial universe, <math>A^\bullet = [ a_1, \ldots, a_n ],\!</math> is extended by a ''first order differential universe'' or ''tangent universe'', <math>\mathrm{d}A^\bullet = [ \mathrm{d}a_1, \ldots, \mathrm{d}a_n ],\!</math> at each point of <math>A^\bullet,\!</math> resulting in a ''first order extended universe'' or ''tangent bundle universe'', <math>\mathrm{E}A^\bullet,\!</math> defined as follows:</p> | |
| − | </ | ||
| − | + | {| align="center" cellspacing="8" width="90%" | |
| + | | | ||
| + | <math>\mathrm{E}A^\bullet ~=~ [ \mathrm{E}\mathcal{A} ] ~=~ [ \mathcal{A} ~\cup~ \mathrm{d}\mathcal{A} ] ~=~ [ a_1, \ldots, a_n, \mathrm{d}a_1, \ldots, \mathrm{d}a_n ].\!</math> | ||
| + | |} | ||
| − | + | <p>This gives <math>\mathrm{E}A^\bullet\!</math> the type:</p> | |
| − | + | {| align="center" cellspacing="8" width="90%" | |
| + | | | ||
| + | <math>[ \mathbb{B}^n \times \mathbb{D}^n ] ~=~ (\mathbb{B}^n \times \mathbb{D}^n\ +\!\!\to \mathbb{B}) ~=~ (\mathbb{B}^n \times \mathbb{D}^n, \mathbb{B}^n \times \mathbb{D}^n \to \mathbb{B}).\!</math> | ||
| + | |} | ||
| + | </li> | ||
| − | + | </ul> | |
| − | + | A proposition in a differential extension of a universe of discourse is called a ''differential proposition'' and forms the analogue of a system of differential equations in ordinary calculus. With these constructions, the first order extended universe <math>\mathrm{E}A^\bullet</math> and the first order differential proposition <math>f : \mathrm{E}A \to \mathbb{B},</math> we have arrived, in concept at least, at the foothills of [[differential logic]]. | |
| − | + | Table 7 summarizes the notations that are needed to describe the first order differential extensions of propositional calculi in a systematic manner. | |
| − | |||
| − | |||
| − | < | + | <br> |
| − | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:75%" | |
| + | |+ style="height:30px" | <math>\text{Table 7.} ~~ \text{Differential Extension : Basic Notation}\!</math> | ||
| + | |- style="height:40px; background:ghostwhite" | ||
| + | | <math>\text{Symbol}\!</math> | ||
| + | | <math>\text{Notation}\!</math> | ||
| + | | <math>\text{Description}\!</math> | ||
| + | | <math>\text{Type}\!</math> | ||
| + | |- | ||
| + | | <math>\mathrm{d}\mathfrak{A}\!</math> | ||
| + | | <math>\{ {}^{\backprime\backprime} \mathrm{d}a_1 {}^{\prime\prime}, \ldots, {}^{\backprime\backprime} \mathrm{d}a_n {}^{\prime\prime} \}\!</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \text{Alphabet of} | ||
| + | \\[2pt] | ||
| + | \text{differential symbols} | ||
| + | \end{matrix}</math> | ||
| + | | <math>[n] = \mathbf{n}\!</math> | ||
| + | |- | ||
| + | | <math>\mathrm{d}\mathcal{A}\!</math> | ||
| + | | <math>\{ \mathrm{d}a_1, \ldots, \mathrm{d}a_n \}\!</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \text{Basis of} | ||
| + | \\[2pt] | ||
| + | \text{differential features} | ||
| + | \end{matrix}</math> | ||
| + | | <math>[n] = \mathbf{n}\!</math> | ||
| + | |- | ||
| + | | <math>\mathrm{d}A_i\!</math> | ||
| + | | <math>\{ \texttt{(} \mathrm{d}a_i \texttt{)}, \mathrm{d}a_i \}\!</math> | ||
| + | | <math>\text{Differential dimension}~ i\!</math> | ||
| + | | <math>\mathbb{D}\!</math> | ||
| + | |- | ||
| + | | <math>\mathrm{d}A\!</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \langle \mathrm{d}\mathcal{A} \rangle | ||
| + | \\[2pt] | ||
| + | \langle \mathrm{d}a_1, \ldots, \mathrm{d}a_n \rangle | ||
| + | \\[2pt] | ||
| + | \{ (\mathrm{d}a_1, \ldots, \mathrm{d}a_n) \} | ||
| + | \\[2pt] | ||
| + | \mathrm{d}A_1 \times \ldots \times \mathrm{d}A_n | ||
| + | \\[2pt] | ||
| + | \textstyle \prod_i \mathrm{d}A_i | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \text{Tangent space at a point:} | ||
| + | \\[2pt] | ||
| + | \text{Set of changes, motions,} | ||
| + | \\[2pt] | ||
| + | \text{steps, tangent vectors} | ||
| + | \\[2pt] | ||
| + | \text{at a point} | ||
| + | \end{matrix}</math> | ||
| + | | <math>\mathbb{D}^n\!</math> | ||
| + | |- | ||
| + | | <math>\mathrm{d}A^*\!</math> | ||
| + | | <math>(\mathrm{hom} : \mathrm{d}A \to \mathbb{B})\!</math> | ||
| + | | <math>\text{Linear functions on}~ \mathrm{d}A\!</math> | ||
| + | | <math>(\mathbb{D}^n)^* \cong \mathbb{D}^n\!</math> | ||
| + | |- | ||
| + | | <math>\mathrm{d}A^\uparrow\!</math> | ||
| + | | <math>(\mathrm{d}A \to \mathbb{B})\!</math> | ||
| + | | <math>\text{Boolean functions on}~ \mathrm{d}A\!</math> | ||
| + | | <math>\mathbb{D}^n \to \mathbb{B}\!</math> | ||
| + | |- | ||
| + | | <math>\mathrm{d}A^\bullet\!</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | [\mathrm{d}\mathcal{A}] | ||
| + | \\[2pt] | ||
| + | (\mathrm{d}A, \mathrm{d}A^\uparrow) | ||
| + | \\[2pt] | ||
| + | (\mathrm{d}A ~+\!\to \mathbb{B}) | ||
| + | \\[2pt] | ||
| + | (\mathrm{d}A, (\mathrm{d}A \to \mathbb{B})) | ||
| + | \\[2pt] | ||
| + | [\mathrm{d}a_1, \ldots, \mathrm{d}a_n] | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \text{Tangent universe at a point of}~ A^\bullet, | ||
| + | \\[2pt] | ||
| + | \text{based on the tangent features} | ||
| + | \\[2pt] | ||
| + | \{ \mathrm{d}a_1, \ldots, \mathrm{d}a_n \} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | (\mathbb{D}^n, (\mathbb{D}^n \to \mathbb{B})) | ||
| + | \\[2pt] | ||
| + | (\mathbb{D}^n ~+\!\to \mathbb{B}) | ||
| + | \\[2pt] | ||
| + | [\mathbb{D}^n] | ||
| + | \end{matrix}</math> | ||
| + | |} | ||
| − | + | <br> | |
| − | + | '''…''' | |
| − | |||
| − | |||
| − | + | ==Appendices== | |
| − | + | ===Appendix 1. Propositional Forms and Differential Expansions=== | |
| − | |||
| − | |||
| − | + | ====Table A1. Propositional Forms on Two Variables==== | |
| − | + | <br> | |
| − | < | + | {| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:80%" |
| − | : <math>\ | + | |+ style="height:30px" | <math>\text{Table A1.} ~~ \text{Propositional Forms on Two Variables}\!</math> |
| + | |- style="background:ghostwhite" | ||
| + | | width="15%" | <math>\begin{matrix}\mathcal{L}_1\\\text{Decimal}\\\text{Index}\end{matrix}</math> | ||
| + | | width="15%" | <math>\begin{matrix}\mathcal{L}_2\\\text{Binary}\\\text{Index}\end{matrix}</math> | ||
| + | | width="15%" | <math>\begin{matrix}\mathcal{L}_3\\\text{Truth}\\\text{Table}\end{matrix}</math> | ||
| + | | width="15%" | <math>\begin{matrix}\mathcal{L}_4\\\text{Cactus}\\\text{Language}\end{matrix}</math> | ||
| + | | width="25%" | <math>\begin{matrix}\mathcal{L}_5\\\text{English}\\\text{Paraphrase}\end{matrix}</math> | ||
| + | | width="15%" | <math>\begin{matrix}\mathcal{L}_6\\\text{Conventional}\\\text{Formula}\end{matrix}</math> | ||
| + | |- style="background:ghostwhite" | ||
| + | | | ||
| + | | align="right" | <math>x\colon\!</math> | ||
| + | | <math>1~1~0~0\!</math> | ||
| + | | || || | ||
| + | |- style="background:ghostwhite" | ||
| + | | | ||
| + | | align="right" | <math>y\colon\!</math> | ||
| + | | <math>1~0~1~0\!</math> | ||
| + | | || || | ||
| + | |- | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | f_{0}\\f_{1}\\f_{2}\\f_{3}\\f_{4}\\f_{5}\\f_{6}\\f_{7} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | f_{0000}\\f_{0001}\\f_{0010}\\f_{0011}\\f_{0100}\\f_{0101}\\f_{0110}\\f_{0111} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | 0~0~0~0\\0~0~0~1\\0~0~1~0\\0~0~1~1\\0~1~0~0\\0~1~0~1\\0~1~1~0\\0~1~1~1 | ||
| + | \end{matrix}\!</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(~)} | ||
| + | \\ | ||
| + | \texttt{(} x \texttt{)(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{(} x \texttt{)~} y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{(} x \texttt{)~ ~} | ||
| + | \\ | ||
| + | \texttt{~} x \texttt{~(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~ ~(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{(} x \texttt{,~} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{(} x \texttt{~~} y \texttt{)} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \text{false} | ||
| + | \\ | ||
| + | \text{neither}~ x ~\text{nor}~ y | ||
| + | \\ | ||
| + | y ~\text{without}~ x | ||
| + | \\ | ||
| + | \text{not}~ x | ||
| + | \\ | ||
| + | x ~\text{without}~ y | ||
| + | \\ | ||
| + | \text{not}~ y | ||
| + | \\ | ||
| + | x ~\text{not equal to}~ y | ||
| + | \\ | ||
| + | \text{not both}~ x ~\text{and}~ y | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | 0 | ||
| + | \\ | ||
| + | \lnot x \land \lnot y | ||
| + | \\ | ||
| + | \lnot x \land y | ||
| + | \\ | ||
| + | \lnot x | ||
| + | \\ | ||
| + | x \land \lnot y | ||
| + | \\ | ||
| + | \lnot y | ||
| + | \\ | ||
| + | x \ne y | ||
| + | \\ | ||
| + | \lnot x \lor \lnot y | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | f_{8}\\f_{9}\\f_{10}\\f_{11}\\f_{12}\\f_{13}\\f_{14}\\f_{15} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | f_{1000}\\f_{1001}\\f_{1010}\\f_{1011}\\f_{1100}\\f_{1101}\\f_{1110}\\f_{1111} | ||
| + | \end{matrix}\!</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | 1~0~0~0\\1~0~0~1\\1~0~1~0\\1~0~1~1\\1~1~0~0\\1~1~0~1\\1~1~1~0\\1~1~1~1 | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~~} x \texttt{~~} y \texttt{~~} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{,~} y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{~ ~ ~} y \texttt{~~} | ||
| + | \\ | ||
| + | \texttt{~(} x \texttt{~(} y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{~~} x \texttt{~ ~ ~} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{)~} y \texttt{)~} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{)(} y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{((~))} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | x ~\text{and}~ y | ||
| + | \\ | ||
| + | x ~\text{equal to}~ y | ||
| + | \\ | ||
| + | y | ||
| + | \\ | ||
| + | \text{not}~ x ~\text{without}~ y | ||
| + | \\ | ||
| + | x | ||
| + | \\ | ||
| + | \text{not}~ y ~\text{without}~ x | ||
| + | \\ | ||
| + | x ~\text{or}~ y | ||
| + | \\ | ||
| + | \text{true} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | x \land y | ||
| + | \\ | ||
| + | x = y | ||
| + | \\ | ||
| + | y | ||
| + | \\ | ||
| + | x \Rightarrow y | ||
| + | \\ | ||
| + | x | ||
| + | \\ | ||
| + | x \Leftarrow y | ||
| + | \\ | ||
| + | x \lor y | ||
| + | \\ | ||
| + | 1 | ||
| + | \end{matrix}</math> | ||
| + | |} | ||
| − | + | <br> | |
| − | |||
| − | + | ====Table A2. Propositional Forms on Two Variables==== | |
| − | < | + | <br> |
| − | |||
| − | : <math>\ | + | {| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:80%" |
| − | + | |+ style="height:30px" | <math>\text{Table A2.} ~~ \text{Propositional Forms on Two Variables}\!</math> | |
| − | + | |- style="background:ghostwhite" | |
| − | + | | width="15%" | <math>\begin{matrix}\mathcal{L}_1\\\text{Decimal}\\\text{Index}\end{matrix}</math> | |
| − | + | | width="15%" | <math>\begin{matrix}\mathcal{L}_2\\\text{Binary}\\\text{Index}\end{matrix}</math> | |
| − | + | | width="15%" | <math>\begin{matrix}\mathcal{L}_3\\\text{Truth}\\\text{Table}\end{matrix}</math> | |
| − | + | | width="15%" | <math>\begin{matrix}\mathcal{L}_4\\\text{Cactus}\\\text{Language}\end{matrix}</math> | |
| − | + | | width="25%" | <math>\begin{matrix}\mathcal{L}_5\\\text{English}\\\text{Paraphrase}\end{matrix}</math> | |
| − | + | | width="15%" | <math>\begin{matrix}\mathcal{L}_6\\\text{Conventional}\\\text{Formula}\end{matrix}</math> | |
| − | + | |- style="background:ghostwhite" | |
| − | + | | | |
| − | + | | align="right" | <math>x\colon\!</math> | |
| − | + | | <math>1~1~0~0\!</math> | |
| − | + | | || || | |
| − | + | |- style="background:ghostwhite" | |
| − | + | | | |
| − | + | | align="right" | <math>y\colon\!</math> | |
| − | + | | <math>1~0~1~0\!</math> | |
| − | + | | || || | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | | | ||
| − | |||
| − | | | ||
| − | | | ||
| − | | | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | | | ||
| − | | | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
|- | |- | ||
| − | | 0 0 0 | + | | <math>f_{0}\!</math> |
| + | | <math>f_{0000}\!</math> | ||
| + | | <math>0~0~0~0</math> | ||
| + | | <math>\texttt{(~)}\!</math> | ||
| + | | <math>\text{false}\!</math> | ||
| + | | <math>0\!</math> | ||
|- | |- | ||
| − | | 0 0 1 | + | | |
| + | <math>\begin{matrix} | ||
| + | f_{1}\\f_{2}\\f_{4}\\f_{8} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | f_{0001}\\f_{0010}\\f_{0100}\\f_{1000} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | 0~0~0~1\\0~0~1~0\\0~1~0~0\\1~0~0~0 | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} x \texttt{)(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{(} x \texttt{)~} y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{~} x \texttt{~(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} x \texttt{~~} y \texttt{~} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \text{neither}~ x ~\text{nor}~ y | ||
| + | \\ | ||
| + | y ~\text{without}~ x | ||
| + | \\ | ||
| + | x ~\text{without}~ y | ||
| + | \\ | ||
| + | x ~\text{and}~ y | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \lnot x \land \lnot y | ||
| + | \\ | ||
| + | \lnot x \land y | ||
| + | \\ | ||
| + | x \land \lnot y | ||
| + | \\ | ||
| + | x \land y | ||
| + | \end{matrix}</math> | ||
|- | |- | ||
| − | | 0 1 0 | + | | |
| + | <math>\begin{matrix} | ||
| + | f_{3}\\f_{12} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | f_{0011}\\f_{1100} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | 0~0~1~1\\1~1~0~0 | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} x \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} x \texttt{~} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \text{not}~ x | ||
| + | \\ | ||
| + | x | ||
| + | \end{matrix}\!</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \lnot x | ||
| + | \\ | ||
| + | x | ||
| + | \end{matrix}</math> | ||
|- | |- | ||
| − | | | + | | |
| − | + | <math>\begin{matrix} | |
| − | | | + | f_{6}\\f_{9} |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| + | <math>\begin{matrix} | ||
| + | f_{0110}\\f_{1001} | ||
| + | \end{matrix}\!</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | 0~1~1~0\\1~0~0~1 | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~(} x \texttt{,~} y \texttt{)~} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{,~} y \texttt{))} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | x ~\text{not equal to}~ y | ||
| + | \\ | ||
| + | x ~\text{equal to}~ y | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | x \ne y | ||
| + | \\ | ||
| + | x = y | ||
| + | \end{matrix}</math> | ||
|- | |- | ||
| − | | 1 1 0 || | + | | |
| + | <math>\begin{matrix} | ||
| + | f_{5}\\f_{10} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | f_{0101}\\f_{1010} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | 0~1~0~1\\1~0~1~0 | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} y \texttt{~} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \text{not}~ y | ||
| + | \\ | ||
| + | y | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \lnot y | ||
| + | \\ | ||
| + | y | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | f_{7}\\f_{11}\\f_{13}\\f_{14} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | f_{0111}\\f_{1011}\\f_{1101}\\f_{1110} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | 0~1~1~1\\1~0~1~1\\1~1~0~1\\1~1~1~0 | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~(} x \texttt{~~} y \texttt{)~} | ||
| + | \\ | ||
| + | \texttt{~(} x \texttt{~(} y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{)~} y \texttt{)~} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{)(} y \texttt{))} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \text{not both}~ x ~\text{and}~ y | ||
| + | \\ | ||
| + | \text{not}~ x ~\text{without}~ y | ||
| + | \\ | ||
| + | \text{not}~ y ~\text{without}~ x | ||
| + | \\ | ||
| + | x ~\text{or}~ y | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \lnot x \lor \lnot y | ||
| + | \\ | ||
| + | x \Rightarrow y | ||
| + | \\ | ||
| + | x \Leftarrow y | ||
| + | \\ | ||
| + | x \lor y | ||
| + | \end{matrix}</math> | ||
|- | |- | ||
| − | | 1 1 1 | + | | <math>f_{15}\!</math> |
| + | | <math>f_{1111}\!</math> | ||
| + | | <math>1~1~1~1\!</math> | ||
| + | | <math>\texttt{((~))}\!</math> | ||
| + | | <math>\text{true}\!</math> | ||
| + | | <math>1\!</math> | ||
|} | |} | ||
| − | + | <br> | |
| − | + | ====Table A3. E''f'' Expanded Over Differential Features==== | |
| − | + | <br> | |
| − | |||
| − | + | {| align="center" cellpadding="6" cellspacing="0" style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; text-align:center; width:80%" | |
| + | |+ style="height:30px" | <math>\text{Table A3.} ~~ \mathrm{E}f ~\text{Expanded Over Differential Features}~ \{ \mathrm{d}x, \mathrm{d}y \}\!</math> | ||
| + | |- style="background:ghostwhite" | ||
| + | | style="width:10%; border-bottom:1px solid black" | | ||
| + | | style="width:18%; border-bottom:1px solid black; border-left:1px solid black" | <math>f\!</math> | ||
| + | | style="width:18%; border-bottom:1px solid black; border-left:4px double black" | | ||
| + | <math>\begin{matrix}\mathrm{T}_{11}f\\\mathrm{E}f|_{\mathrm{d}x ~ \mathrm{d}y}\end{matrix}</math> | ||
| + | | style="width:18%; border-bottom:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix}\mathrm{T}_{10}f\\\mathrm{E}f|_{\mathrm{d}x \texttt{(} \mathrm{d}y \texttt{)}}\end{matrix}</math> | ||
| + | | style="width:18%; border-bottom:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix}\mathrm{T}_{01}f\\\mathrm{E}f|_{\texttt{(} \mathrm{d}x \texttt{)} \mathrm{d}y}\end{matrix}</math> | ||
| + | | style="width:18%; border-bottom:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix}\mathrm{T}_{00}f\\\mathrm{E}f|_{\texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)}}\end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | <math>f_{0}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>0\!</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | <math>0\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>0\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>0\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>0\!</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | f_{1}\\f_{2}\\f_{4}\\f_{8} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} x \texttt{)(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{(} x \texttt{)~} y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{~} x \texttt{~(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} x \texttt{~~} y \texttt{~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~} x \texttt{~~} y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{~} x \texttt{~(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{(} x \texttt{)~} y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{(} x \texttt{)(} y \texttt{)} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~} x \texttt{~(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} x \texttt{~~} y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{(} x \texttt{)(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{(} x \texttt{)~} y \texttt{~} | ||
| + | \end{matrix}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} x \texttt{)~} y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{(} x \texttt{)(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} x \texttt{~~} y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{~} x \texttt{~(} y \texttt{)} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} x \texttt{)(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{(} x \texttt{)~} y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{~} x \texttt{~(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} x \texttt{~~} y \texttt{~} | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | f_{3}\\f_{12} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} x \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} x \texttt{~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~} x \texttt{~} | ||
| + | \\ | ||
| + | \texttt{(} x \texttt{)} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~} x \texttt{~} | ||
| + | \\ | ||
| + | \texttt{(} x \texttt{)} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} x \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} x \texttt{~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} x \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} x \texttt{~} | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | f_{6}\\f_{9} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~(} x \texttt{,~} y \texttt{)~} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{,~} y \texttt{))} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~(} x \texttt{,~} y \texttt{)~} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{,~} y \texttt{))} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{((} x \texttt{,~} y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{~(} x \texttt{,~} y \texttt{)~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{((} x \texttt{,~} y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{~(} x \texttt{,~} y \texttt{)~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~(} x \texttt{,~} y \texttt{)~} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{,~} y \texttt{))} | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | f_{5}\\f_{10} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} y \texttt{~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~} y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{(} y \texttt{)} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} y \texttt{~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~} y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{(} y \texttt{)} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} y \texttt{~} | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | f_{7}\\f_{11}\\f_{13}\\f_{14} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(~} x \texttt{~~} y \texttt{~)} | ||
| + | \\ | ||
| + | \texttt{(~} x \texttt{~(} y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{)~} y \texttt{~)} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{)(} y \texttt{))} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{((} x \texttt{)(} y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{)~} y \texttt{~)} | ||
| + | \\ | ||
| + | \texttt{(~} x \texttt{~(} y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{(~} x \texttt{~~} y \texttt{~)} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{((} x \texttt{)~} y \texttt{~)} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{)(} y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{(~} x \texttt{~~} y \texttt{~)} | ||
| + | \\ | ||
| + | \texttt{(~} x \texttt{~(} y \texttt{))} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(~} x \texttt{~(} y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{(~} x \texttt{~~} y \texttt{~)} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{)(} y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{)~} y \texttt{~)} | ||
| + | \end{matrix}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(~} x \texttt{~~} y \texttt{~)} | ||
| + | \\ | ||
| + | \texttt{(~} x \texttt{~(} y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{)~} y \texttt{~)} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{)(} y \texttt{))} | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | <math>f_{15}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>1\!</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | <math>1\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>1\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>1\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>1\!</math> | ||
| + | |- style="background:ghostwhite" | ||
| + | | style="border-top:1px solid black" colspan="2" | <math>\text{Fixed Point Total}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | <math>4\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>4\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>4\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>16\!</math> | ||
| + | |} | ||
| − | + | <br> | |
| − | + | ====Table A4. D''f'' Expanded Over Differential Features==== | |
| − | |||
| − | < | + | <br> |
| − | |||
| − | + | {| align="center" cellpadding="6" cellspacing="0" style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; text-align:center; width:80%" | |
| + | |+ style="height:30px" | <math>\text{Table A4.} ~~ \mathrm{D}f ~\text{Expanded Over Differential Features}~ \{ \mathrm{d}x, \mathrm{d}y \}\!</math> | ||
| + | |- style="background:ghostwhite" | ||
| + | | style="width:10%; border-bottom:1px solid black" | | ||
| + | | style="width:18%; border-bottom:1px solid black; border-left:1px solid black" | <math>f\!</math> | ||
| + | | style="width:18%; border-bottom:1px solid black; border-left:4px double black" | | ||
| + | <math>\mathrm{D}f|_{\mathrm{d}x ~ \mathrm{d}y}\!</math> | ||
| + | | style="width:18%; border-bottom:1px solid black; border-left:1px solid black" | | ||
| + | <math>\mathrm{D}f|_{\mathrm{d}x \texttt{(} \mathrm{d}y \texttt{)}}\!</math> | ||
| + | | style="width:18%; border-bottom:1px solid black; border-left:1px solid black" | | ||
| + | <math>\mathrm{D}f|_{\texttt{(} \mathrm{d}x \texttt{)} \mathrm{d}y}~\!</math> | ||
| + | | style="width:18%; border-bottom:1px solid black; border-left:1px solid black" | | ||
| + | <math>\mathrm{D}f|_{\texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)}}\!</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | <math>f_{0}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>0\!</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | <math>0\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>0\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>0\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>0\!</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | f_{1}\\f_{2}\\f_{4}\\f_{8} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} x \texttt{)(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{(} x \texttt{)~} y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{~} x \texttt{~(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} x \texttt{~~} y \texttt{~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{((} x \texttt{,~} y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{~(} x \texttt{,~} y \texttt{)~} | ||
| + | \\ | ||
| + | \texttt{~(} x \texttt{,~} y \texttt{)~} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{,~} y \texttt{))} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} y \texttt{)} | ||
| + | \\ | ||
| + | y | ||
| + | \\ | ||
| + | \texttt{(} y \texttt{)} | ||
| + | \\ | ||
| + | y | ||
| + | \end{matrix}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} x \texttt{)} | ||
| + | \\ | ||
| + | \texttt{(} x \texttt{)} | ||
| + | \\ | ||
| + | x | ||
| + | \\ | ||
| + | x | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix}0\\0\\0\\0\end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | | ||
| + | <math>\begin{matrix}f_{3}\\f_{12}\end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} x \texttt{)} | ||
| + | \\ | ||
| + | x | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | | ||
| + | <math>\begin{matrix}1\\1\end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix}1\\1\end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix}0\\0\end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix}0\\0\end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | | ||
| + | <math>\begin{matrix}f_{6}\\f_{9}\end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~(} x \texttt{,~} y \texttt{)~} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{,~} y \texttt{))} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | | ||
| + | <math>\begin{matrix}0\\0\end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix}1\\1\end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix}1\\1\end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix}0\\0\end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | | ||
| + | <math>\begin{matrix}f_{5}\\f_{10}\end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} y \texttt{~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | | ||
| + | <math>\begin{matrix}1\\1\end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix}0\\0\end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix}1\\1\end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix}0\\0\end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | | ||
| + | <math>\begin{matrix}f_{7}\\f_{11}\\f_{13}\\f_{14}\end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(~} x \texttt{~~} y \texttt{~)} | ||
| + | \\ | ||
| + | \texttt{(~} x \texttt{~(} y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{)~} y \texttt{~)} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{)(} y \texttt{))} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{((} x \texttt{,~} y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{~(} x \texttt{,~} y \texttt{)~} | ||
| + | \\ | ||
| + | \texttt{~(} x \texttt{,~} y \texttt{)~} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{,~} y \texttt{))} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | y | ||
| + | \\ | ||
| + | \texttt{(} y \texttt{)} | ||
| + | \\ | ||
| + | y | ||
| + | \\ | ||
| + | \texttt{(} y \texttt{)} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | x | ||
| + | \\ | ||
| + | x | ||
| + | \\ | ||
| + | \texttt{(} x \texttt{)} | ||
| + | \\ | ||
| + | \texttt{(} x \texttt{)} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix}0\\0\\0\\0\end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | <math>f_{15}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>1\!</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | <math>0\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>0\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>0\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>0\!</math> | ||
| + | |} | ||
| − | + | <br> | |
| − | + | ====Table A5. E''f'' Expanded Over Ordinary Features==== | |
| − | + | <br> | |
| − | + | {| align="center" cellpadding="6" cellspacing="0" style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; text-align:center; width:80%" | |
| + | |+ style="height:30px" | <math>\text{Table A5.} ~~ \mathrm{E}f ~\text{Expanded Over Ordinary Features}~ \{ x, y \}\!</math> | ||
| + | |- style="background:ghostwhite" | ||
| + | | style="width:10%; border-bottom:1px solid black" | | ||
| + | | style="width:18%; border-bottom:1px solid black; border-left:1px solid black" | <math>f\!</math> | ||
| + | | style="width:18%; border-bottom:1px solid black; border-left:4px double black" | | ||
| + | <math>\mathrm{E}f|_{xy}\!</math> | ||
| + | | style="width:18%; border-bottom:1px solid black; border-left:1px solid black" | | ||
| + | <math>\mathrm{E}f|_{x \texttt{(} y \texttt{)}}\!</math> | ||
| + | | style="width:18%; border-bottom:1px solid black; border-left:1px solid black" | | ||
| + | <math>\mathrm{E}f|_{\texttt{(} x \texttt{)} y}\!</math> | ||
| + | | style="width:18%; border-bottom:1px solid black; border-left:1px solid black" | | ||
| + | <math>\mathrm{E}f|_{\texttt{(} x \texttt{)(} y \texttt{)}}\!</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | <math>f_{0}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>0\!</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | <math>0\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>0\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>0\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>0\!</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | f_{1}\\f_{2}\\f_{4}\\f_{8} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} x \texttt{)(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{(} x \texttt{)~} y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{~} x \texttt{~(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} x \texttt{~~} y \texttt{~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~} \mathrm{d}x \texttt{~~} \mathrm{d}y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{~} \mathrm{d}x \texttt{~(} \mathrm{d}y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{(} \mathrm{d}x \texttt{)~} \mathrm{d}y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~} \mathrm{d}x \texttt{~(} \mathrm{d}y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} \mathrm{d}x \texttt{~~} \mathrm{d}y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{(} \mathrm{d}x \texttt{)~} \mathrm{d}y \texttt{~} | ||
| + | \end{matrix}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} \mathrm{d}x \texttt{)~} \mathrm{d}y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} \mathrm{d}x \texttt{~~} \mathrm{d}y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{~} \mathrm{d}x \texttt{~(} \mathrm{d}y \texttt{)} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{(} \mathrm{d}x \texttt{)~} \mathrm{d}y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{~} \mathrm{d}x \texttt{~(} \mathrm{d}y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} \mathrm{d}x \texttt{~~} \mathrm{d}y \texttt{~} | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | f_{3}\\f_{12} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} x \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} x \texttt{~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~} \mathrm{d}x \texttt{~} | ||
| + | \\ | ||
| + | \texttt{(} \mathrm{d}x \texttt{)} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~} \mathrm{d}x \texttt{~} | ||
| + | \\ | ||
| + | \texttt{(} \mathrm{d}x \texttt{)} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} \mathrm{d}x \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} \mathrm{d}x \texttt{~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} \mathrm{d}x \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} \mathrm{d}x \texttt{~} | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | f_{6}\\f_{9} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~(} x \texttt{,~} y \texttt{)~} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{,~} y \texttt{))} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~(} \mathrm{d}x \texttt{,~} \mathrm{d}y \texttt{)~} | ||
| + | \\ | ||
| + | \texttt{((} \mathrm{d}x \texttt{,~} \mathrm{d}y \texttt{))} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{((} \mathrm{d}x \texttt{,~} \mathrm{d}y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{~(} \mathrm{d}x \texttt{,~} \mathrm{d}y \texttt{)~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{((} \mathrm{d}x \texttt{,~} \mathrm{d}y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{~(} \mathrm{d}x \texttt{,~} \mathrm{d}y \texttt{)~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~(} \mathrm{d}x \texttt{,~} \mathrm{d}y \texttt{)~} | ||
| + | \\ | ||
| + | \texttt{((} \mathrm{d}x \texttt{,~} \mathrm{d}y \texttt{))} | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | f_{5}\\f_{10} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} y \texttt{~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~} \mathrm{d}y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{(} \mathrm{d}y \texttt{)} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} \mathrm{d}y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} \mathrm{d}y \texttt{~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~} \mathrm{d}y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{(} \mathrm{d}y \texttt{)} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} \mathrm{d}y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} \mathrm{d}y \texttt{~} | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | f_{7}\\f_{11}\\f_{13}\\f_{14} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(~} x \texttt{~~} y \texttt{~)} | ||
| + | \\ | ||
| + | \texttt{(~} x \texttt{~(} y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{)~} y \texttt{~)} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{)(} y \texttt{))} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{((} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{((} \mathrm{d}x \texttt{)~} \mathrm{d}y \texttt{~)} | ||
| + | \\ | ||
| + | \texttt{(~} \mathrm{d}x \texttt{~(} \mathrm{d}y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{(~} \mathrm{d}x \texttt{~~} \mathrm{d}y \texttt{~)} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{((} \mathrm{d}x \texttt{)~} \mathrm{d}y \texttt{~)} | ||
| + | \\ | ||
| + | \texttt{((} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{(~} \mathrm{d}x \texttt{~~} \mathrm{d}y \texttt{~)} | ||
| + | \\ | ||
| + | \texttt{(~} \mathrm{d}x \texttt{~(} \mathrm{d}y \texttt{))} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(~} \mathrm{d}x \texttt{~(} \mathrm{d}y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{(~} \mathrm{d}x \texttt{~~} \mathrm{d}y \texttt{~)} | ||
| + | \\ | ||
| + | \texttt{((} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{((} \mathrm{d}x \texttt{)~} \mathrm{d}y \texttt{~)} | ||
| + | \end{matrix}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(~} \mathrm{d}x \texttt{~~} \mathrm{d}y \texttt{~)} | ||
| + | \\ | ||
| + | \texttt{(~} \mathrm{d}x \texttt{~(} \mathrm{d}y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{((} \mathrm{d}x \texttt{)~} \mathrm{d}y \texttt{~)} | ||
| + | \\ | ||
| + | \texttt{((} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{))} | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | <math>f_{15}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>1\!</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | <math>1\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>1\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>1\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>1\!</math> | ||
| + | |} | ||
| − | < | + | <br> |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | ====Table A6. D''f'' Expanded Over Ordinary Features==== | |
| − | < | + | <br> |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | {| align="center" cellpadding="6" cellspacing="0" style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; text-align:center; width:80%" | |
| − | + | |+ style="height:30px" | <math>\text{Table A6.} ~~ \mathrm{D}f ~\text{Expanded Over Ordinary Features}~ \{ x, y \}\!</math> | |
| − | : < | + | |- style="background:ghostwhite" |
| − | + | | style="width:10%; border-bottom:1px solid black" | | |
| − | + | | style="width:18%; border-bottom:1px solid black; border-left:1px solid black" | <math>f\!</math> | |
| − | + | | style="width:18%; border-bottom:1px solid black; border-left:4px double black" | | |
| − | : < | + | <math>\mathrm{D}f|_{xy}\!</math> |
| + | | style="width:18%; border-bottom:1px solid black; border-left:1px solid black" | | ||
| + | <math>\mathrm{D}f|_{x \texttt{(} y \texttt{)}}\!</math> | ||
| + | | style="width:18%; border-bottom:1px solid black; border-left:1px solid black" | | ||
| + | <math>\mathrm{D}f|_{\texttt{(} x \texttt{)} y}\!</math> | ||
| + | | style="width:18%; border-bottom:1px solid black; border-left:1px solid black" | | ||
| + | <math>\mathrm{D}f|_{\texttt{(} x \texttt{)(} y \texttt{)}}\!</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | <math>f_{0}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>0\!</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | <math>0\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>0\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>0\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>0\!</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | <math>\begin{matrix}f_{1}\\f_{2}\\f_{4}\\f_{8}\end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} x \texttt{)(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{(} x \texttt{)~} y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{~} x \texttt{~(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} x \texttt{~~} y \texttt{~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~} \mathrm{d}x \texttt{~~} \mathrm{d}y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{~} \mathrm{d}x \texttt{~(} \mathrm{d}y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{(} \mathrm{d}x \texttt{)~} \mathrm{d}y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{((} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{))} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~} \mathrm{d}x \texttt{~(} \mathrm{d}y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} \mathrm{d}x \texttt{~~} \mathrm{d}y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{((} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{(} \mathrm{d}x \texttt{)~} \mathrm{d}y \texttt{~} | ||
| + | \end{matrix}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} \mathrm{d}x \texttt{)~} \mathrm{d}y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{((} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{~} \mathrm{d}x \texttt{~~} \mathrm{d}y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{~} \mathrm{d}x \texttt{~(} \mathrm{d}y \texttt{)} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{((} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{(} \mathrm{d}x \texttt{)~} \mathrm{d}y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{~} \mathrm{d}x \texttt{~(} \mathrm{d}y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} \mathrm{d}x \texttt{~~} \mathrm{d}y \texttt{~} | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | <math>\begin{matrix}f_{3}\\f_{12}\end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix}\texttt{(} x \texttt{)}\\\texttt{~} x \texttt{~}\end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | | ||
| + | <math>\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | <math>\begin{matrix}f_{6}\\f_{9}\end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~(} x \texttt{,~} y \texttt{)~} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{,~} y \texttt{))} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} \mathrm{d}x \texttt{,~} \mathrm{d}y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{(} \mathrm{d}x \texttt{,~} \mathrm{d}y \texttt{)} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} \mathrm{d}x \texttt{,~} \mathrm{d}y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{(} \mathrm{d}x \texttt{,~} \mathrm{d}y \texttt{)} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} \mathrm{d}x \texttt{,~} \mathrm{d}y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{(} \mathrm{d}x \texttt{,~} \mathrm{d}y \texttt{)} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} \mathrm{d}x \texttt{,~} \mathrm{d}y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{(} \mathrm{d}x \texttt{,~} \mathrm{d}y \texttt{)} | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | <math>\begin{matrix}f_{5}\\f_{10}\end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} y \texttt{~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | | ||
| + | <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | <math>\begin{matrix}f_{7}\\f_{11}\\f_{13}\\f_{14}\end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(~} x \texttt{~~} y \texttt{~)} | ||
| + | \\ | ||
| + | \texttt{(~} x \texttt{~(} y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{)~} y \texttt{~)} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{)(} y \texttt{))} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{((} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{(} \mathrm{d}x \texttt{)~} \mathrm{d}y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{~} \mathrm{d}x \texttt{~(} \mathrm{d}y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} \mathrm{d}x \texttt{~~} \mathrm{d}y \texttt{~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} \mathrm{d}x \texttt{)~} \mathrm{d}y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{((} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{~} \mathrm{d}x \texttt{~~} \mathrm{d}y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{~} \mathrm{d}x \texttt{~(} \mathrm{d}y \texttt{)} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~} \mathrm{d}x \texttt{~(} \mathrm{d}y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} \mathrm{d}x \texttt{~~} \mathrm{d}y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{((} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{(} \mathrm{d}x \texttt{)~} \mathrm{d}y \texttt{~} | ||
| + | \end{matrix}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~} \mathrm{d}x \texttt{~~} \mathrm{d}y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{~} \mathrm{d}x \texttt{~(} \mathrm{d}y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{(} \mathrm{d}x \texttt{)~} \mathrm{d}y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{((} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{))} | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | <math>f_{15}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>1\!</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | <math>0\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>0\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>0\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | <math>0\!</math> | ||
| + | |} | ||
| − | + | <br> | |
| − | + | ===Appendix 2. Differential Forms=== | |
| − | < | + | The actions of the difference operator <math>\mathrm{D}\!</math> and the tangent operator <math>\mathrm{d}\!</math> on the 16 bivariate propositions are shown in Tables A7 and A8. |
| − | |||
| − | |||
| − | |||
| − | |||
| − | </ | ||
| − | + | Table A7 expands the differential forms that result over a ''logical basis'': | |
| − | < | + | {| align="center" cellpadding="6" style="text-align:center" |
| − | + | | | |
| − | + | <math>\{~ \texttt{(}\mathrm{d}x\texttt{)(}\mathrm{d}y\texttt{)}, ~\mathrm{d}x~\texttt{(}\mathrm{d}y\texttt{)}, ~\texttt{(}\mathrm{d}x\texttt{)}~\mathrm{d}y, ~\mathrm{d}x~\mathrm{d}y ~\}.\!</math> | |
| − | + | |} | |
| − | |||
| − | |||
| − | |||
| − | </ | ||
| − | + | This set consists of the singular propositions in the first order differential variables, indicating mutually exclusive and exhaustive ''cells'' of the tangent universe of discourse. Accordingly, this set of differential propositions may also be referred to as the cell-basis, point-basis, or singular differential basis. In this setting it is frequently convenient to use the following abbreviations: | |
| − | + | {| align="center" cellpadding="6" style="text-align:center" | |
| + | | | ||
| + | <math>\partial x ~=~ \mathrm{d}x~\texttt{(}\mathrm{d}y\texttt{)}\!</math> and <math>\partial y ~=~ \texttt{(}\mathrm{d}x\texttt{)}~\mathrm{d}y.\!</math> | ||
| + | |} | ||
| − | + | Table A8 expands the differential forms that result over an ''algebraic basis'': | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | {| align="center" cellpadding="6" style="text-align:center" | |
| + | | <math>\{~ 1, ~\mathrm{d}x, ~\mathrm{d}y, ~\mathrm{d}x~\mathrm{d}y ~\}.\!</math> | ||
| + | |} | ||
| − | + | This set consists of the ''positive propositions'' in the first order differential variables, indicating overlapping positive regions of the tangent universe of discourse. Accordingly, this set of differential propositions may also be referred to as the ''positive differential basis''. | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | ====Table A7. Differential Forms Expanded on a Logical Basis==== | |
| − | < | + | <br> |
| − | |||
| − | < | + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:center; width:90%" |
| − | </ | + | |+ style="height:30px" | <math>\text{Table A7.} ~~ \text{Differential Forms Expanded on a Logical Basis}\!</math> |
| + | |- style="background:ghostwhite; height:40px" | ||
| + | | | ||
| + | | style="border-right:none" | <math>f\!</math> | ||
| + | | style="border-left:4px double black" | <math>\mathrm{D}f~\!</math> | ||
| + | | <math>\mathrm{d}f~\!</math> | ||
| + | |- | ||
| + | | <math>f_{0}\!</math> | ||
| + | | style="border-right:none" | <math>\texttt{(~)}\!</math> | ||
| + | | style="border-left:4px double black" | <math>0\!</math> | ||
| + | | <math>0\!</math> | ||
| + | |- | ||
| + | | <math>\begin{matrix}f_{1}\\f_{2}\\f_{4}\\f_{8}\end{matrix}</math> | ||
| + | | style="border-right:none" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} x \texttt{)(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{(} x \texttt{)~} y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{~} x \texttt{~(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} x \texttt{~~} y \texttt{~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} y \texttt{)} & \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} | ||
| + | & + & | ||
| + | \texttt{(} x \texttt{)} & \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y | ||
| + | & + & | ||
| + | \texttt{((} x \texttt{,~} y \texttt{))} & \mathrm{d}x ~ \mathrm{d}y | ||
| + | \\ | ||
| + | y & \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} | ||
| + | & + & | ||
| + | \texttt{(} x \texttt{)} & \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y | ||
| + | & + & | ||
| + | \texttt{(} x \texttt{,~} y \texttt{)} & \mathrm{d}x ~ \mathrm{d}y | ||
| + | \\ | ||
| + | \texttt{(} y \texttt{)} & \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} | ||
| + | & + & | ||
| + | x & \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y | ||
| + | & + & | ||
| + | \texttt{(} x \texttt{,~} y \texttt{)} & \mathrm{d}x ~ \mathrm{d}y | ||
| + | \\ | ||
| + | y & \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} | ||
| + | & + & | ||
| + | x & \texttt{(} \mathrm{d}x) ~ \mathrm{d}y | ||
| + | & + & | ||
| + | \texttt{((} x \texttt{,~} y \texttt{))} & \mathrm{d}x ~ \mathrm{d}y | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} y \texttt{)} ~\partial x | ||
| + | & + & | ||
| + | \texttt{(} x \texttt{)} ~\partial y | ||
| + | \\ | ||
| + | \texttt{~} y \texttt{~} ~\partial x | ||
| + | & + & | ||
| + | \texttt{(} x \texttt{)} ~\partial y | ||
| + | \\ | ||
| + | \texttt{(} y \texttt{)} ~\partial x | ||
| + | & + & | ||
| + | \texttt{~} x \texttt{~} ~\partial y | ||
| + | \\ | ||
| + | \texttt{~} y \texttt{~} ~\partial x | ||
| + | & + & | ||
| + | \texttt{~} x \texttt{~} ~\partial y | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | <math>\begin{matrix}f_{3}\\f_{12}\end{matrix}</math> | ||
| + | | style="border-right:none" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} x \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} x \texttt{~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} & + & \mathrm{d}x ~ \mathrm{d}y | ||
| + | \\ | ||
| + | \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} & + & \mathrm{d}x ~ \mathrm{d}y | ||
| + | \end{matrix}\!</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \partial x | ||
| + | \\ | ||
| + | \partial x | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | <math>\begin{matrix}f_{6}\\f_{9}\end{matrix}</math> | ||
| + | | style="border-right:none" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~(} x \texttt{,~} y \texttt{)~} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{,~} y \texttt{))} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} & + & \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y | ||
| + | \\ | ||
| + | \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} & + & \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \partial x & + & \partial y | ||
| + | \\ | ||
| + | \partial x & + & \partial y | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | <math>\begin{matrix}f_{5}\\f_{10}\end{matrix}</math> | ||
| + | | style="border-right:none" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} y \texttt{~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y & + & \mathrm{d}x ~ \mathrm{d}y | ||
| + | \\ | ||
| + | \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y & + & \mathrm{d}x ~ \mathrm{d}y | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \partial y | ||
| + | \\ | ||
| + | \partial y | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | <math>\begin{matrix}f_{7}\\f_{11}\\f_{13}\\f_{14}\end{matrix}</math> | ||
| + | | style="border-right:none" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(~} x \texttt{~~} y \texttt{~)} | ||
| + | \\ | ||
| + | \texttt{(~} x \texttt{~(} y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{)~} y \texttt{~)} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{)(} y \texttt{))} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | y & \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} | ||
| + | & + & | ||
| + | x & \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y | ||
| + | & + & | ||
| + | \texttt{((} x \texttt{,~} y \texttt{))} & \mathrm{d}x ~ \mathrm{d}y | ||
| + | \\ | ||
| + | \texttt{(} y \texttt{)} & \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} | ||
| + | & + & | ||
| + | x & \texttt{(} \mathrm{d}x) ~ \mathrm{d}y | ||
| + | & + & | ||
| + | \texttt{(} x \texttt{,~} y \texttt{)} & \mathrm{d}x ~ \mathrm{d}y | ||
| + | \\ | ||
| + | y & \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} | ||
| + | & + & | ||
| + | \texttt{(} x \texttt{)} & \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y | ||
| + | & + & | ||
| + | \texttt{(} x \texttt{,~} y \texttt{)} & \mathrm{d}x ~ \mathrm{d}y | ||
| + | \\ | ||
| + | \texttt{(} y \texttt{)} & \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} | ||
| + | & + & | ||
| + | \texttt{(} x \texttt{)} & \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y | ||
| + | & + & | ||
| + | \texttt{((} x \texttt{,~} y \texttt{))} & \mathrm{d}x ~ \mathrm{d}y | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~} y \texttt{~} ~\partial x | ||
| + | & + & | ||
| + | \texttt{~} x \texttt{~} ~\partial y | ||
| + | \\ | ||
| + | \texttt{(} y \texttt{)} ~\partial x | ||
| + | & + & | ||
| + | \texttt{~} x \texttt{~} ~\partial y | ||
| + | \\ | ||
| + | \texttt{~} y \texttt{~} ~\partial x | ||
| + | & + & | ||
| + | \texttt{(} x \texttt{)} ~\partial y | ||
| + | \\ | ||
| + | \texttt{(} y \texttt{)} ~\partial x | ||
| + | & + & | ||
| + | \texttt{(} x \texttt{)} ~\partial y | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | <math>f_{15}\!</math> | ||
| + | | style="border-right:none" | <math>\texttt{((~))}\!</math> | ||
| + | | style="border-left:4px double black" | <math>0\!</math> | ||
| + | | <math>0\!</math> | ||
| + | |} | ||
| − | + | <br> | |
| − | + | ====Table A8. Differential Forms Expanded on an Algebraic Basis==== | |
| − | < | + | <br> |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:center; width:90%" | |
| + | |+ style="height:30px" | <math>\text{Table A8.} ~~ \text{Differential Forms Expanded on an Algebraic Basis}\!</math> | ||
| + | |- style="background:ghostwhite; height:40px" | ||
| + | | | ||
| + | | style="border-right:none" | <math>f\!</math> | ||
| + | | style="border-left:4px double black" | <math>\mathrm{D}f~\!</math> | ||
| + | | <math>\mathrm{d}f~\!</math> | ||
| + | |- | ||
| + | | <math>f_{0}\!</math> | ||
| + | | style="border-right:none" | <math>\texttt{(~)}\!</math> | ||
| + | | style="border-left:4px double black" | <math>0\!</math> | ||
| + | | <math>0\!</math> | ||
| + | |- | ||
| + | | <math>\begin{matrix}f_{1}\\f_{2}\\f_{4}\\f_{8}\end{matrix}</math> | ||
| + | | style="border-right:none" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} x \texttt{)(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{(} x \texttt{)~} y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{~} x \texttt{~(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} x \texttt{~~} y \texttt{~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} y \texttt{)}~\mathrm{d}x & + & \texttt{(} x \texttt{)}~\mathrm{d}y & + & \mathrm{d}x~\mathrm{d}y | ||
| + | \\ | ||
| + | \texttt{~} y \texttt{~}~\mathrm{d}x & + & \texttt{(} x \texttt{)}~\mathrm{d}y & + & \mathrm{d}x~\mathrm{d}y | ||
| + | \\ | ||
| + | \texttt{(} y \texttt{)}~\mathrm{d}x & + & \texttt{~} x \texttt{~}~\mathrm{d}y & + & \mathrm{d}x~\mathrm{d}y | ||
| + | \\ | ||
| + | \texttt{~} y \texttt{~}~\mathrm{d}x & + & \texttt{~} x \texttt{~}~\mathrm{d}y & + & \mathrm{d}x~\mathrm{d}y | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} y \texttt{)}~\mathrm{d}x & + & \texttt{(} x \texttt{)}~\mathrm{d}y | ||
| + | \\ | ||
| + | \texttt{~} y \texttt{~}~\mathrm{d}x & + & \texttt{(} x \texttt{)}~\mathrm{d}y | ||
| + | \\ | ||
| + | \texttt{(} y \texttt{)}~\mathrm{d}x & + & \texttt{~} x \texttt{~}~\mathrm{d}y | ||
| + | \\ | ||
| + | \texttt{~} y \texttt{~}~\mathrm{d}x & + & \texttt{~} x \texttt{~}~\mathrm{d}y | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | <math>\begin{matrix}f_{3}\\f_{12}\end{matrix}</math> | ||
| + | | style="border-right:none" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} x \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} x \texttt{~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | \mathrm{d}x | ||
| + | \\ | ||
| + | \mathrm{d}x | ||
| + | \end{matrix}\!</math> | ||
| + | | <math>\begin{matrix} | ||
| + | \mathrm{d}x | ||
| + | \\ | ||
| + | \mathrm{d}x | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | <math>\begin{matrix}f_{6}\\f_{9}\end{matrix}</math> | ||
| + | | style="border-right:none" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~(} x \texttt{,~} y \texttt{)~} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{,~} y \texttt{))} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | \mathrm{d}x & + & \mathrm{d}y | ||
| + | \\ | ||
| + | \mathrm{d}x & + & \mathrm{d}y | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \mathrm{d}x & + & \mathrm{d}y | ||
| + | \\ | ||
| + | \mathrm{d}x & + & \mathrm{d}y | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | <math>\begin{matrix}f_{5}\\f_{10}\end{matrix}</math> | ||
| + | | style="border-right:none" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} y \texttt{~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | \mathrm{d}y | ||
| + | \\ | ||
| + | \mathrm{d}y | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \mathrm{d}y | ||
| + | \\ | ||
| + | \mathrm{d}y | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | <math>\begin{matrix}f_{7}\\f_{11}\\f_{13}\\f_{14}\end{matrix}</math> | ||
| + | | style="border-right:none" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(~} x \texttt{~~} y \texttt{~)} | ||
| + | \\ | ||
| + | \texttt{(~} x \texttt{~(} y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{)~} y \texttt{~)} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{)(} y \texttt{))} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~} y \texttt{~}~\mathrm{d}x & + & \texttt{~} x \texttt{~}~\mathrm{d}y & + & \mathrm{d}x~\mathrm{d}y | ||
| + | \\ | ||
| + | \texttt{(} y \texttt{)}~\mathrm{d}x & + & \texttt{~} x \texttt{~}~\mathrm{d}y & + & \mathrm{d}x~\mathrm{d}y | ||
| + | \\ | ||
| + | \texttt{~} y \texttt{~}~\mathrm{d}x & + & \texttt{(} x \texttt{)}~\mathrm{d}y & + & \mathrm{d}x~\mathrm{d}y | ||
| + | \\ | ||
| + | \texttt{(} y \texttt{)}~\mathrm{d}x & + & \texttt{(} x \texttt{)}~\mathrm{d}y & + & \mathrm{d}x~\mathrm{d}y | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~} y \texttt{~}~\mathrm{d}x & + & \texttt{~} x \texttt{~}~\mathrm{d}y | ||
| + | \\ | ||
| + | \texttt{(} y \texttt{)}~\mathrm{d}x & + & \texttt{~} x \texttt{~}~\mathrm{d}y | ||
| + | \\ | ||
| + | \texttt{~} y \texttt{~}~\mathrm{d}x & + & \texttt{(} x \texttt{)}~\mathrm{d}y | ||
| + | \\ | ||
| + | \texttt{(} y \texttt{)}~\mathrm{d}x & + & \texttt{(} x \texttt{)}~\mathrm{d}y | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | <math>f_{15}\!</math> | ||
| + | | style="border-right:none" | <math>\texttt{((~))}\!</math> | ||
| + | | style="border-left:4px double black" | <math>0\!</math> | ||
| + | | <math>0\!</math> | ||
| + | |} | ||
| − | < | + | <br> |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | ====Table A9. Tangent Proposition as Pointwise Linear Approximation==== | |
| − | < | + | <br> |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | {| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:90%" | |
| − | + | |+ style="height:30px" | <math>\text{Table A9.} ~~ \text{Tangent Proposition}~ \mathrm{d}f = \text{Pointwise Linear Approximation to the Difference Map}~ \mathrm{D}f\!</math> | |
| − | + | |- style="background:ghostwhite; height:40px" | |
| − | + | | style="border-right:none" | <math>f\!</math> | |
| − | < | + | | style="border-left:4px double black" | |
| − | + | <math>\begin{matrix} | |
| − | + | \mathrm{d}f = | |
| − | + | \\[2pt] | |
| − | + | \partial_x f \cdot \mathrm{d}x ~+~ \partial_y f \cdot \mathrm{d}y | |
| − | + | \end{matrix}</math> | |
| − | | | + | | |
| − | | | + | <math>\begin{matrix} |
| − | | | + | \mathrm{d}^2\!f = |
| − | | | + | \\[2pt] |
| − | | | + | \partial_{xy} f \cdot \mathrm{d}x\;\mathrm{d}y |
| − | | | + | \end{matrix}</math> |
| − | | | + | | <math>\mathrm{d}f|_{x \, y}</math> |
| − | | | + | | <math>\mathrm{d}f|_{x \, \texttt{(} y \texttt{)}}</math> |
| − | + | | <math>\mathrm{d}f|_{\texttt{(} x \texttt{)} \, y}</math> | |
| − | + | | <math>\mathrm{d}f|_{\texttt{(} x \texttt{)(} y \texttt{)}}</math> | |
| − | + | |- | |
| − | + | | style="border-right:none" | <math>f_0\!</math> | |
| − | + | | style="border-left:4px double black" | <math>0\!</math> | |
| − | + | | <math>0\!</math> | |
| − | + | | <math>0\!</math> | |
| − | + | | <math>0\!</math> | |
| − | + | | <math>0\!</math> | |
| − | + | | <math>0\!</math> | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
|- | |- | ||
| − | | | + | | style="border-right:none" | |
| + | <math>\begin{matrix}f_{1}\\f_{2}\\f_{4}\\f_{8}\end{matrix}\!</math> | ||
| + | | style="border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y | ||
| + | \\ | ||
| + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y | ||
| + | \\ | ||
| + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y | ||
| + | \\ | ||
| + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \mathrm{d}x\;\mathrm{d}y | ||
| + | \\ | ||
| + | \mathrm{d}x\;\mathrm{d}y | ||
| + | \\ | ||
| + | \mathrm{d}x\;\mathrm{d}y | ||
| + | \\ | ||
| + | \mathrm{d}x\;\mathrm{d}y | ||
| + | \end{matrix}</math> | ||
| + | | <math>\begin{matrix}0\\\mathrm{d}x\\\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\end{matrix}</math> | ||
| + | | <math>\begin{matrix}\mathrm{d}x\\0\\\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\end{matrix}</math> | ||
| + | | <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\\0\\\mathrm{d}x\end{matrix}</math> | ||
| + | | <math>\begin{matrix}\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\\\mathrm{d}x\\0\end{matrix}</math> | ||
|- | |- | ||
| − | | | + | | style="border-right:none" | |
| + | <math>\begin{matrix}f_{3}\\f_{12}\end{matrix}</math> | ||
| + | | style="border-left:4px double black" | | ||
| + | <math>\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}</math> | ||
| + | | <math>\begin{matrix}0\\0\end{matrix}</math> | ||
| + | | <math>\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}</math> | ||
| + | | <math>\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}</math> | ||
| + | | <math>\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}</math> | ||
| + | | <math>\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}</math> | ||
|- | |- | ||
| − | | | + | | style="border-right:none" | |
| + | <math>\begin{matrix}f_{6}\\f_{9}\end{matrix}</math> | ||
| + | | style="border-left:4px double black" | | ||
| + | <math>\begin{matrix}\mathrm{d}x & + & \mathrm{d}y\\\mathrm{d}x & + & \mathrm{d}y\end{matrix}</math> | ||
| + | | <math>\begin{matrix}0\\0\end{matrix}</math> | ||
| + | | <math>\begin{matrix}\mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\end{matrix}</math> | ||
| + | | <math>\begin{matrix}\mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\end{matrix}</math> | ||
| + | | <math>\begin{matrix}\mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\end{matrix}</math> | ||
| + | | <math>\begin{matrix}\mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\end{matrix}</math> | ||
|- | |- | ||
| − | | | + | | style="border-right:none" | |
| + | <math>\begin{matrix}f_{5}\\f_{10}\end{matrix}\!</math> | ||
| + | | style="border-left:4px double black" | | ||
| + | <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}\!</math> | ||
| + | | <math>\begin{matrix}0\\0\end{matrix}</math> | ||
| + | | <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}\!</math> | ||
| + | | <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}\!</math> | ||
| + | | <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}\!</math> | ||
| + | | <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}\!</math> | ||
|- | |- | ||
| − | | | + | | style="border-right:none" | |
| + | <math>\begin{matrix}f_{7}\\f_{11}\\f_{13}\\f_{14}\end{matrix}</math> | ||
| + | | style="border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y | ||
| + | \\ | ||
| + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y | ||
| + | \\ | ||
| + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y | ||
| + | \\ | ||
| + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y | ||
| + | \end{matrix}\!</math> | ||
| + | | <math>\begin{matrix} | ||
| + | \mathrm{d}x\;\mathrm{d}y | ||
| + | \\ | ||
| + | \mathrm{d}x\;\mathrm{d}y | ||
| + | \\ | ||
| + | \mathrm{d}x\;\mathrm{d}y | ||
| + | \\ | ||
| + | \mathrm{d}x\;\mathrm{d}y | ||
| + | \end{matrix}</math> | ||
| + | | <math>\begin{matrix}\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\\\mathrm{d}x\\0\end{matrix}</math> | ||
| + | | <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\\0\\\mathrm{d}x\end{matrix}</math> | ||
| + | | <math>\begin{matrix}\mathrm{d}x\\0\\\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\end{matrix}</math> | ||
| + | | <math>\begin{matrix}0\\\mathrm{d}x\\\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\end{matrix}</math> | ||
|- | |- | ||
| − | | | + | | style="border-right:none" | <math>f_{15}\!</math> |
| − | | | + | | style="border-left:4px double black" | <math>0\!</math> |
| − | | | + | | <math>0\!</math> |
| − | | | + | | <math>0\!</math> |
| − | + | | <math>0\!</math> | |
| + | | <math>0\!</math> | ||
| + | | <math>0\!</math> | ||
|} | |} | ||
| − | + | <br> | |
| − | + | ====Table A10. Taylor Series Expansion Df = d''f'' + d<sup>2</sup>''f''==== | |
| − | |||
| − | + | <br> | |
| − | + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:center; width:90%" | |
| − | + | |+ style="height:30px" | | |
| − | + | <math>\text{Table A10.} ~~ \text{Taylor Series Expansion}~ {\mathrm{D}f = \mathrm{d}f + \mathrm{d}^2\!f}\!</math> | |
| − | + | |- style="background:ghostwhite; height:40px" | |
| − | < | + | | style="border-right:none" | <math>f\!</math> |
| − | + | | style="border-left:4px double black" | | |
| − | </ | + | <math>\begin{matrix} |
| − | + | \mathrm{D}f | |
| − | + | \\ | |
| − | + | = & \mathrm{d}f & + & \mathrm{d}^2\!f | |
| − | + | \\ | |
| − | + | = & \partial_x f \cdot \mathrm{d}x ~+~ \partial_y f \cdot \mathrm{d}y & + & \partial_{xy} f \cdot \mathrm{d}x\;\mathrm{d}y | |
| − | + | \end{matrix}</math> | |
| − | + | | <math>\mathrm{d}f|_{x \, y}</math> | |
| − | + | | <math>\mathrm{d}f|_{x \, \texttt{(} y \texttt{)}}</math> | |
| − | + | | <math>\mathrm{d}f|_{\texttt{(} x \texttt{)} \, y}</math> | |
| − | + | | <math>\mathrm{d}f|_{\texttt{(} x \texttt{)(} y \texttt{)}}</math> | |
| − | + | |- | |
| − | + | | style="border-right:none" | <math>f_0\!</math> | |
| − | + | | style="border-left:4px double black" | <math>0\!</math> | |
| − | + | | <math>0\!</math> | |
| − | + | | <math>0\!</math> | |
| − | + | | <math>0\!</math> | |
| − | + | | <math>0\!</math> | |
| − | + | |- | |
| − | | | + | | style="border-right:none" | <math>\begin{matrix}f_{1}\\f_{2}\\f_{4}\\f_{8}\end{matrix}</math> |
| − | | | + | | style="border-left:4px double black" | |
| − | + | <math>\begin{matrix} | |
| − | + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & | |
| − | | | + | \texttt{(} x \texttt{)} \cdot \mathrm{d}y & + & |
| − | + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y | |
| − | | | + | \\ |
| − | + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & | |
| − | + | \texttt{(} x \texttt{)} \cdot \mathrm{d}y & + & | |
| − | + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y | |
| − | + | \\ | |
| − | + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & | |
| − | + | \texttt{~} x \texttt{~} \cdot \mathrm{d}y & + & | |
| − | + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y | |
| − | + | \\ | |
| − | + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & | |
| − | + | \texttt{~} x \texttt{~} \cdot \mathrm{d}y & + & | |
| − | + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | | | + | 0\\\mathrm{d}x\\\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y |
| − | | | + | \end{matrix}</math> |
| − | | | + | | |
| − | + | <math>\begin{matrix} | |
| − | + | \mathrm{d}x\\0\\\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\\0\\\mathrm{d}x | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | </ | + | <math>\begin{matrix} |
| − | + | \mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\\\mathrm{d}x\\0 | |
| − | + | \end{matrix}</math> | |
| − | + | |- | |
| − | + | | style="border-right:none" | <math>\begin{matrix}f_{3}\\f_{12}\end{matrix}</math> | |
| − | + | | style="border-left:4px double black" | | |
| − | + | <math>\begin{matrix} | |
| − | + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + & | |
| − | + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}y & + & | |
| − | + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y | |
| − | | | + | \\ |
| − | + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + & | |
| − | + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}y & + & | |
| − | + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y | |
| − | + | \end{matrix}</math> | |
| − | | | + | | |
| − | | | + | <math>\begin{matrix} |
| − | + | \mathrm{d}x\\\mathrm{d}x | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | \mathrm{d}x\\\mathrm{d}x | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | \mathrm{d}x\\\mathrm{d}x | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | | | + | \mathrm{d}x\\\mathrm{d}x |
| − | | | + | \end{matrix}</math> |
| − | | | + | |- |
| − | + | | style="border-right:none" | <math>\begin{matrix}f_{6}\\f_{9}\end{matrix}</math> | |
| − | + | | style="border-left:4px double black" | | |
| − | + | <math>\begin{matrix} | |
| − | | | + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + & |
| − | | | + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + & |
| − | | | + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| − | + | \\ | |
| − | + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + & | |
| − | + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + & | |
| − | + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| + | \mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-right:none" | <math>\begin{matrix}f_{5}\\f_{10}\end{matrix}</math> | ||
| + | | style="border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x & + & | ||
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + & | ||
| + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y | ||
| + | \\ | ||
| + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x & + & | ||
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + & | ||
| + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \mathrm{d}y\\\mathrm{d}y | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \mathrm{d}y\\\mathrm{d}y | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \mathrm{d}y\\\mathrm{d}y | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \mathrm{d}y\\\mathrm{d}y | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-right:none" | <math>\begin{matrix}f_{7}\\f_{11}\\f_{13}\\f_{14}\end{matrix}</math> | ||
| + | | style="border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & | ||
| + | \texttt{~} x \texttt{~} \cdot \mathrm{d}y & + & | ||
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y | ||
| + | \\ | ||
| + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & | ||
| + | \texttt{~} x \texttt{~} \cdot \mathrm{d}y & + & | ||
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y | ||
| + | \\ | ||
| + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & | ||
| + | \texttt{(} x \texttt{)} \cdot \mathrm{d}y & + & | ||
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y | ||
| + | \\ | ||
| + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & | ||
| + | \texttt{(} x \texttt{)} \cdot \mathrm{d}y & + & | ||
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\\\mathrm{d}x\\0 | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\\0\\\mathrm{d}x | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \mathrm{d}x\\0\\\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | 0\\\mathrm{d}x\\\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-right:none" | <math>f_{15}\!</math> | ||
| + | | style="border-left:4px double black" | <math>0\!</math> | ||
| + | | <math>0\!</math> | ||
| + | | <math>0\!</math> | ||
| + | | <math>0\!</math> | ||
| + | | <math>0\!</math> | ||
| + | |} | ||
| − | + | <br> | |
| − | + | ====Table A11. Partial Differentials and Relative Differentials==== | |
| − | + | <br> | |
| − | + | {| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:90%" | |
| − | + | |+ style="height:30px" | <math>\text{Table A11.} ~~ \text{Partial Differentials and Relative Differentials}\!</math> | |
| − | + | |- style="background:ghostwhite; height:50px" | |
| − | + | | | |
| − | + | | <math>f\!</math> | |
| − | + | | <math>\frac{\partial f}{\partial x}\!</math> | |
| − | + | | <math>\frac{\partial f}{\partial y}\!</math> | |
| − | </ | + | | |
| − | + | <math>\begin{matrix} | |
| − | + | \mathrm{d}f = | |
| − | + | \\[2pt] | |
| − | < | + | \partial_x f \cdot \mathrm{d}x ~+~ \partial_y f \cdot \mathrm{d}y |
| − | + | \end{matrix}</math> | |
| − | + | | <math>\left. \frac{\partial x}{\partial y} \right| f\!</math> | |
| − | + | | <math>\left. \frac{\partial y}{\partial x} \right| f\!</math> | |
| − | + | |- | |
| − | + | | <math>f_0\!</math> | |
| − | + | | <math>\texttt{(~)}\!</math> | |
| − | + | | <math>0\!</math> | |
| − | + | | <math>0\!</math> | |
| − | + | | <math>0\!</math> | |
| − | + | | <math>0\!</math> | |
| − | </ | + | | <math>0\!</math> |
| − | + | |- | |
| − | + | | <math>\begin{matrix}f_{1}\\f_{2}\\f_{4}\\f_{8}\end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | \texttt{(} x \texttt{)(} y \texttt{)} | |
| − | < | + | \\ |
| − | + | \texttt{(} x \texttt{)~} y \texttt{~} | |
| − | + | \\ | |
| − | + | \texttt{~} x \texttt{~(} y \texttt{)} | |
| − | + | \\ | |
| − | + | \texttt{~} x \texttt{~~} y \texttt{~} | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | \texttt{(} y \texttt{)} | |
| − | + | \\ | |
| − | + | \texttt{~} y \texttt{~} | |
| − | + | \\ | |
| − | + | \texttt{(} y \texttt{)} | |
| − | + | \\ | |
| − | + | \texttt{~} y \texttt{~} | |
| − | + | \end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | \texttt{(} x \texttt{)} | |
| − | | | + | \\ |
| − | + | \texttt{(} x \texttt{)} | |
| − | + | \\ | |
| − | + | \texttt{~} x \texttt{~} | |
| − | | | + | \\ |
| − | | | + | \texttt{~} x \texttt{~} |
| − | | | + | \end{matrix}</math> |
| − | | | + | | |
| − | + | <math>\begin{matrix} | |
| − | + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y | |
| − | + | \\ | |
| − | + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y | |
| − | + | \\ | |
| − | + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y | |
| − | + | \\ | |
| − | + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y | |
| − | + | \end{matrix}</math> | |
| − | + | | <math>\begin{matrix}\cdots\\\cdots\\\cdots\\\cdots\end{matrix}</math> | |
| − | + | | <math>\begin{matrix}\cdots\\\cdots\\\cdots\\\cdots\end{matrix}</math> | |
| − | + | |- | |
| − | + | | <math>\begin{matrix}f_{3}\\f_{12}\end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | \texttt{(} x \texttt{)} | |
| − | + | \\ | |
| − | + | \texttt{~} x \texttt{~} | |
| − | + | \end{matrix}</math> | |
| − | + | | <math>\begin{matrix}1\\1\end{matrix}</math> | |
| − | < | + | | <math>\begin{matrix}0\\0\end{matrix}</math> |
| − | + | | <math>\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}</math> | |
| − | + | | <math>\begin{matrix}\cdots\\\cdots\end{matrix}</math> | |
| − | + | | <math>\begin{matrix}\cdots\\\cdots\end{matrix}</math> | |
| − | + | |- | |
| − | + | | <math>\begin{matrix}f_{6}\\f_{9}\end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | \texttt{~(} x \texttt{,~} y \texttt{)~} | |
| − | + | \\ | |
| − | + | \texttt{((} x \texttt{,~} y \texttt{))} | |
| − | + | \end{matrix}</math> | |
| − | + | | <math>\begin{matrix}1\\1\end{matrix}</math> | |
| − | + | | <math>\begin{matrix}1\\1\end{matrix}</math> | |
| − | + | | <math>\begin{matrix}\mathrm{d}x & + & \mathrm{d}y\\\mathrm{d}x & + & \mathrm{d}y\end{matrix}</math> | |
| − | < | + | | <math>\begin{matrix}\cdots\\\cdots\end{matrix}</math> |
| − | + | | <math>\begin{matrix}\cdots\\\cdots\end{matrix}</math> | |
| − | + | |- | |
| − | + | | <math>\begin{matrix}f_{5}\\f_{10}\end{matrix}</math> | |
| − | + | | | |
| − | + | <math>\begin{matrix} | |
| − | + | \texttt{(} y \texttt{)} | |
| − | + | \\ | |
| − | + | \texttt{~} y \texttt{~} | |
| − | < | + | \end{matrix}</math> |
| + | | <math>\begin{matrix}0\\0\end{matrix}</math> | ||
| + | | <math>\begin{matrix}1\\1\end{matrix}</math> | ||
| + | | <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}</math> | ||
| + | | <math>\begin{matrix}\cdots\\\cdots\end{matrix}</math> | ||
| + | | <math>\begin{matrix}\cdots\\\cdots\end{matrix}</math> | ||
| + | |- | ||
| + | | <math>\begin{matrix}f_{7}\\f_{11}\\f_{13}\\f_{14}\end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{(~} x \texttt{~~} y \texttt{~)} | ||
| + | \\ | ||
| + | \texttt{(~} x \texttt{~(} y \texttt{))} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{)~} y \texttt{~)} | ||
| + | \\ | ||
| + | \texttt{((} x \texttt{)(} y \texttt{))} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~} y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{(} y \texttt{)} | ||
| + | \\ | ||
| + | \texttt{~} y \texttt{~} | ||
| + | \\ | ||
| + | \texttt{(} y \texttt{)} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~} x \texttt{~} | ||
| + | \\ | ||
| + | \texttt{~} x \texttt{~} | ||
| + | \\ | ||
| + | \texttt{(} x \texttt{)} | ||
| + | \\ | ||
| + | \texttt{(} x \texttt{)} | ||
| + | \end{matrix}</math> | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y | ||
| + | \\ | ||
| + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y | ||
| + | \\ | ||
| + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y | ||
| + | \\ | ||
| + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y | ||
| + | \end{matrix}</math> | ||
| + | | <math>\begin{matrix}\cdots\\\cdots\\\cdots\\\cdots\end{matrix}</math> | ||
| + | | <math>\begin{matrix}\cdots\\\cdots\\\cdots\\\cdots\end{matrix}</math> | ||
| + | |- | ||
| + | | <math>f_{15}\!</math> | ||
| + | | <math>\texttt{((~))}\!</math> | ||
| + | | <math>0\!</math> | ||
| + | | <math>0\!</math> | ||
| + | | <math>0\!</math> | ||
| + | | <math>0\!</math> | ||
| + | | <math>0\!</math> | ||
| + | |} | ||
| − | + | <br> | |
| − | + | ====Table A12. Detail of Calculation for the Difference Map==== | |
| − | + | <br> | |
| − | + | {| align="center" cellpadding="6" cellspacing="0" style="border-bottom:4px double black; border-left:4px double black; border-right:4px double black; border-top:4px double black; text-align:center; width:80%" | |
| − | + | |+ style="height:30px" | <math>\text{Table A12.} ~~ \text{Detail of Calculation for}~ {\mathrm{E}f + f = \mathrm{D}f}\!</math> | |
| − | + | |- style="background:ghostwhite" | |
| − | + | | style="width:6%" | | |
| − | : <math>\ | + | | style="width:14%; border-left:1px solid black" | <math>f\!</math> |
| − | + | | style="width:20%; border-left:4px double black" | | |
| − | : | + | <math>\begin{array}{cr} |
| − | + | ~ & \mathrm{E}f|_{\mathrm{d}x ~ \mathrm{d}y} | |
| − | : <math>\ | + | \\[4pt] |
| − | + | + & f|_{\mathrm{d}x ~ \mathrm{d}y} | |
| − | : | + | \\[4pt] |
| − | + | = & \mathrm{D}f|_{\mathrm{d}x ~ \mathrm{d}y} | |
| − | < | + | \end{array}</math> |
| − | + | | style="width:20%; border-left:1px solid black" | | |
| − | + | <math>\begin{array}{cr} | |
| − | + | ~ & \mathrm{E}f|_{\texttt{(} \mathrm{d}x \texttt{)} \mathrm{d}y} | |
| − | + | \\[4pt] | |
| − | + | + & f|_{\texttt{(} \mathrm{d}x \texttt{)} \mathrm{d}y} | |
| − | + | \\[4pt] | |
| − | </ | + | = & \mathrm{D}f|_{\texttt{(} \mathrm{d}x \texttt{)} \mathrm{d}y} |
| + | \end{array}</math> | ||
| + | | style="width:20%; border-left:1px solid black" | | ||
| + | <math>\begin{array}{cr} | ||
| + | ~ & \mathrm{E}f|_{\mathrm{d}x \texttt{(} \mathrm{d}y \texttt{)}} | ||
| + | \\[4pt] | ||
| + | + & f|_{\mathrm{d}x \texttt{(} \mathrm{d}y \texttt{)}} | ||
| + | \\[4pt] | ||
| + | = & \mathrm{D}f|_{\mathrm{d}x \texttt{(} \mathrm{d}y \texttt{)}} | ||
| + | \end{array}</math> | ||
| + | | style="width:20%; border-left:1px solid black" | | ||
| + | <math>\begin{array}{cr} | ||
| + | ~ & \mathrm{E}f|_{\texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)}} | ||
| + | \\[4pt] | ||
| + | + & f|_{\texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)}} | ||
| + | \\[4pt] | ||
| + | = & \mathrm{D}f|_{\texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)}} | ||
| + | \end{array}</math> | ||
| + | |- | ||
| + | | style="border-top:4px double black" | <math>f_{0}\!</math> | ||
| + | | style="border-top:4px double black; border-left:1px solid black" | <math>0\!</math> | ||
| + | | style="border-top:4px double black; border-left:4px double black" | <math>0 ~+~ 0 ~=~ 0\!</math> | ||
| + | | style="border-top:4px double black; border-left:1px solid black" | <math>0 ~+~ 0 ~=~ 0\!</math> | ||
| + | | style="border-top:4px double black; border-left:1px solid black" | <math>0 ~+~ 0 ~=~ 0\!</math> | ||
| + | | style="border-top:4px double black; border-left:1px solid black" | <math>0 ~+~ 0 ~=~ 0\!</math> | ||
| + | |- | ||
| + | | style="border-top:4px double black" | <math>f_{1}\!</math> | ||
| + | | style="border-top:4px double black; border-left:1px solid black" | | ||
| + | <math>\texttt{~(} x \texttt{)(} y \texttt{)~}\!</math> | ||
| + | | style="border-top:4px double black; border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{~~} x \texttt{~~} y \texttt{~~} | ||
| + | \\[4pt] | ||
| + | + & \texttt{~(} x \texttt{)(} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | = & \texttt{((} x \texttt{,~} y \texttt{))} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:4px double black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{~~} x \texttt{~(} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | + & \texttt{~(} x \texttt{)(} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | = & \texttt{~~} ~ \texttt{~(} y \texttt{)~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:4px double black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{~(} x \texttt{)~} y \texttt{~~} | ||
| + | \\[4pt] | ||
| + | + & \texttt{~(} x \texttt{)(} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | = & \texttt{~(} x \texttt{)~} ~ \texttt{~~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:4px double black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{~(} x \texttt{)(} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | + & \texttt{~(} x \texttt{)(} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | = & 0 | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | <math>f_{2}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\texttt{~(} x \texttt{)~} y \texttt{~~}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{~~} x \texttt{~(} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | + & \texttt{~(} x \texttt{)~} y \texttt{~~} | ||
| + | \\[4pt] | ||
| + | = & \texttt{~(} x \texttt{,~} y \texttt{)~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{~~} x \texttt{~~} y \texttt{~~} | ||
| + | \\[4pt] | ||
| + | + & \texttt{~(} x \texttt{)~} y \texttt{~~} | ||
| + | \\[4pt] | ||
| + | = & \texttt{~~} ~ \texttt{~~} y \texttt{~~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{~(} x \texttt{)(} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | + & \texttt{~(} x \texttt{)~} y \texttt{~~} | ||
| + | \\[4pt] | ||
| + | = & \texttt{~(} x \texttt{)~} ~ \texttt{~~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{~(} x \texttt{)~} y \texttt{~~} | ||
| + | \\[4pt] | ||
| + | + & \texttt{~(} x \texttt{)~} y \texttt{~~} | ||
| + | \\[4pt] | ||
| + | = & 0 | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | <math>f_{4}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\texttt{~~} x \texttt{~(} y \texttt{)~}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{~(} x \texttt{)~} y \texttt{~~} | ||
| + | \\[4pt] | ||
| + | + & \texttt{~~} x \texttt{~(} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | = & \texttt{~(} x \texttt{,~} y \texttt{)~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{~(} x \texttt{)(} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | + & \texttt{~~} x \texttt{~(} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | = & \texttt{~~} ~ \texttt{~(} y \texttt{)~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{~~} x \texttt{~~} y \texttt{~~} | ||
| + | \\[4pt] | ||
| + | + & \texttt{~~} x \texttt{~(} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | = & \texttt{~~} x \texttt{~~} ~ \texttt{~~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{~~} x \texttt{~(} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | + & \texttt{~~} x \texttt{~(} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | = & 0 | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | <math>f_{8}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\texttt{~~} x \texttt{~~} y \texttt{~~}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{~(} x \texttt{)(} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | + & \texttt{~~} x \texttt{~~} y \texttt{~~} | ||
| + | \\[4pt] | ||
| + | = & \texttt{((} x \texttt{,~} y \texttt{))} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{~(} x \texttt{)~} y \texttt{~~} | ||
| + | \\[4pt] | ||
| + | + & \texttt{~~} x \texttt{~~} y \texttt{~~} | ||
| + | \\[4pt] | ||
| + | = & \texttt{~~} ~ \texttt{~~} y \texttt{~~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{~~} x \texttt{~(} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | + & \texttt{~~} x \texttt{~~} y \texttt{~~} | ||
| + | \\[4pt] | ||
| + | = & \texttt{~~} x \texttt{~~} ~ \texttt{~~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{~~} x \texttt{~~} y \texttt{~~} | ||
| + | \\[4pt] | ||
| + | + & \texttt{~~} x \texttt{~~} y \texttt{~~} | ||
| + | \\[4pt] | ||
| + | = & 0 | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:4px double black" | <math>f_{3}\!</math> | ||
| + | | style="border-top:4px double black; border-left:1px solid black" | | ||
| + | <math>\texttt{(} x \texttt{)}\!</math> | ||
| + | | style="border-top:4px double black; border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & x | ||
| + | \\[4pt] | ||
| + | + & \texttt{(} x \texttt{)} | ||
| + | \\[4pt] | ||
| + | = & 1 | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:4px double black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & x | ||
| + | \\[4pt] | ||
| + | + & \texttt{(} x \texttt{)} | ||
| + | \\[4pt] | ||
| + | = & 1 | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:4px double black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{(} x \texttt{)} | ||
| + | \\[4pt] | ||
| + | + & \texttt{(} x \texttt{)} | ||
| + | \\[4pt] | ||
| + | = & 0 | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:4px double black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{(} x \texttt{)} | ||
| + | \\[4pt] | ||
| + | + & \texttt{(} x \texttt{)} | ||
| + | \\[4pt] | ||
| + | = & 0 | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | <math>f_{12}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>x\!</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{(} x \texttt{)} | ||
| + | \\[4pt] | ||
| + | + & x | ||
| + | \\[4pt] | ||
| + | = & 1 | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{(} x \texttt{)} | ||
| + | \\[4pt] | ||
| + | + & x | ||
| + | \\[4pt] | ||
| + | = & 1 | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & x | ||
| + | \\[4pt] | ||
| + | + & x | ||
| + | \\[4pt] | ||
| + | = & 0 | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & x | ||
| + | \\[4pt] | ||
| + | + & x | ||
| + | \\[4pt] | ||
| + | = & 0 | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:4px double black" | <math>f_{6}\!</math> | ||
| + | | style="border-top:4px double black; border-left:1px solid black" | | ||
| + | <math>\texttt{~(} x \texttt{,~} y \texttt{)~}\!</math> | ||
| + | | style="border-top:4px double black; border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{~(} x \texttt{,~} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | + & \texttt{~(} x \texttt{,~} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | = & 0 | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:4px double black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{((} x \texttt{,~} y \texttt{))} | ||
| + | \\[4pt] | ||
| + | + & \texttt{~(} x \texttt{,~} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | = & 1 | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:4px double black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{((} x \texttt{,~} y \texttt{))} | ||
| + | \\[4pt] | ||
| + | + & \texttt{~(} x \texttt{,~} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | = & 1 | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:4px double black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{~(} x \texttt{,~} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | + & \texttt{~(} x \texttt{,~} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | = & 0 | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | <math>f_{9}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\texttt{((} x \texttt{,~} y \texttt{))}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{((} x \texttt{,~} y \texttt{))} | ||
| + | \\[4pt] | ||
| + | + & \texttt{((} x \texttt{,~} y \texttt{))} | ||
| + | \\[4pt] | ||
| + | = & 0 | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{~(} x \texttt{,~} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | + & \texttt{((} x \texttt{,~} y \texttt{))} | ||
| + | \\[4pt] | ||
| + | = & 1 | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{~(} x \texttt{,~} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | + & \texttt{((} x \texttt{,~} y \texttt{))} | ||
| + | \\[4pt] | ||
| + | = & 1 | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{((} x \texttt{,~} y \texttt{))} | ||
| + | \\[4pt] | ||
| + | + & \texttt{((} x \texttt{,~} y \texttt{))} | ||
| + | \\[4pt] | ||
| + | = & 0 | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:4px double black" | <math>f_{5}\!</math> | ||
| + | | style="border-top:4px double black; border-left:1px solid black" | | ||
| + | <math>\texttt{(} y \texttt{)}\!</math> | ||
| + | | style="border-top:4px double black; border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & y | ||
| + | \\[4pt] | ||
| + | + & \texttt{(} y \texttt{)} | ||
| + | \\[4pt] | ||
| + | = & 1 | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:4px double black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{(} y \texttt{)} | ||
| + | \\[4pt] | ||
| + | + & \texttt{(} y \texttt{)} | ||
| + | \\[4pt] | ||
| + | = & 0 | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:4px double black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & y | ||
| + | \\[4pt] | ||
| + | + & \texttt{(} y \texttt{)} | ||
| + | \\[4pt] | ||
| + | = & 1 | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:4px double black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{(} y \texttt{)} | ||
| + | \\[4pt] | ||
| + | + & \texttt{(} y \texttt{)} | ||
| + | \\[4pt] | ||
| + | = & 0 | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | <math>f_{10}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>y\!</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{(} y \texttt{)} | ||
| + | \\[4pt] | ||
| + | + & y | ||
| + | \\[4pt] | ||
| + | = & 1 | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & y | ||
| + | \\[4pt] | ||
| + | + & y | ||
| + | \\[4pt] | ||
| + | = & 0 | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{(} y \texttt{)} | ||
| + | \\[4pt] | ||
| + | + & y | ||
| + | \\[4pt] | ||
| + | = & 1 | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & y | ||
| + | \\[4pt] | ||
| + | + & y | ||
| + | \\[4pt] | ||
| + | = & 0 | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:4px double black" | <math>f_{7}\!</math> | ||
| + | | style="border-top:4px double black; border-left:1px solid black" | | ||
| + | <math>\texttt{~(} x \texttt{~~} y \texttt{)~}\!</math> | ||
| + | | style="border-top:4px double black; border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{((} x \texttt{)(} y \texttt{))} | ||
| + | \\[4pt] | ||
| + | + & \texttt{~(} x \texttt{~~} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | = & \texttt{((} x \texttt{,~} y \texttt{))} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:4px double black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{((} x \texttt{)~} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | + & \texttt{~(} x \texttt{~~} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | = & \texttt{~~} ~ \texttt{~~} y \texttt{~~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:4px double black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{~(} x \texttt{~(} y \texttt{))} | ||
| + | \\[4pt] | ||
| + | + & \texttt{~(} x \texttt{~~} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | = & \texttt{~~} x \texttt{~~} ~ \texttt{~~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:4px double black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{~(} x \texttt{~~} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | + & \texttt{~(} x \texttt{~~} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | = & 0 | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | <math>f_{11}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\texttt{~(} x \texttt{~(} y \texttt{))}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{((} x \texttt{)~} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | + & \texttt{~(} x \texttt{~(} y \texttt{))} | ||
| + | \\[4pt] | ||
| + | = & \texttt{~(} x \texttt{,~} y \texttt{)~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{((} x \texttt{)(} y \texttt{))} | ||
| + | \\[4pt] | ||
| + | + & \texttt{~(} x \texttt{~(} y \texttt{))} | ||
| + | \\[4pt] | ||
| + | = & \texttt{~~} ~ \texttt{~(} y \texttt{)~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{~(} x \texttt{~~} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | + & \texttt{~(} x \texttt{~(} y \texttt{))} | ||
| + | \\[4pt] | ||
| + | = & \texttt{~~} x \texttt{~~} ~ \texttt{~~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{~(} x \texttt{~(} y \texttt{))} | ||
| + | \\[4pt] | ||
| + | + & \texttt{~(} x \texttt{~(} y \texttt{))} | ||
| + | \\[4pt] | ||
| + | = & 0 | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | <math>f_{13}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\texttt{((} x \texttt{)~} y \texttt{)~}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{~(} x \texttt{~(} y \texttt{))} | ||
| + | \\[4pt] | ||
| + | + & \texttt{((} x \texttt{)~} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | = & \texttt{~(} x \texttt{,~} y \texttt{)~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{~(} x \texttt{~~} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | + & \texttt{((} x \texttt{)~} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | = & \texttt{~~} ~ \texttt{~~} y \texttt{~~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{((} x \texttt{)(} y \texttt{))} | ||
| + | \\[4pt] | ||
| + | + & \texttt{((} x \texttt{)~} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | = & \texttt{~(} x \texttt{)~} ~ \texttt{~~} | ||
| + | \end{matrix}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{((} x \texttt{)~} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | + & \texttt{((} x \texttt{)~} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | = & 0 | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:1px solid black" | <math>f_{14}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\texttt{((} x \texttt{)(} y \texttt{))}\!</math> | ||
| + | | style="border-top:1px solid black; border-left:4px double black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{~(} x \texttt{~~} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | + & \texttt{((} x \texttt{)(} y \texttt{))} | ||
| + | \\[4pt] | ||
| + | = & \texttt{((} x \texttt{,~} y \texttt{))} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{~(} x \texttt{~(} y \texttt{))} | ||
| + | \\[4pt] | ||
| + | + & \texttt{((} x \texttt{)(} y \texttt{))} | ||
| + | \\[4pt] | ||
| + | = & \texttt{~~} ~ \texttt{~(} y \texttt{)~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{((} x \texttt{)~} y \texttt{)~} | ||
| + | \\[4pt] | ||
| + | + & \texttt{((} x \texttt{)(} y \texttt{))} | ||
| + | \\[4pt] | ||
| + | = & \texttt{~(} x \texttt{)~} ~ \texttt{~~} | ||
| + | \end{matrix}</math> | ||
| + | | style="border-top:1px solid black; border-left:1px solid black" | | ||
| + | <math>\begin{matrix} | ||
| + | ~ & \texttt{((} x \texttt{)(} y \texttt{))} | ||
| + | \\[4pt] | ||
| + | + & \texttt{((} x \texttt{)(} y \texttt{))} | ||
| + | \\[4pt] | ||
| + | = & 0 | ||
| + | \end{matrix}</math> | ||
| + | |- | ||
| + | | style="border-top:4px double black" | <math>f_{15}\!</math> | ||
| + | | style="border-top:4px double black; border-left:1px solid black" | <math>1\!</math> | ||
| + | | style="border-top:4px double black; border-left:4px double black" | <math>1 ~+~ 1 ~=~ 0\!</math> | ||
| + | | style="border-top:4px double black; border-left:1px solid black" | <math>1 ~+~ 1 ~=~ 0\!</math> | ||
| + | | style="border-top:4px double black; border-left:1px solid black" | <math>1 ~+~ 1 ~=~ 0\!</math> | ||
| + | | style="border-top:4px double black; border-left:1px solid black" | <math>1 ~+~ 1 ~=~ 0\!</math> | ||
| + | |} | ||
| − | + | <br> | |
| − | + | ===Appendix 3. Computational Details=== | |
| − | + | ====Operator Maps for the Logical Conjunction ''f''<sub>8</sub>(u, v)==== | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | =====Computation of ε''f''<sub>8</sub>===== | |
| − | < | + | <br> |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" | |
| + | |+ style="height:30px" | <math>\text{Table F8.1} ~~ \text{Computation of}~ \boldsymbol\varepsilon f_{8}~\!</math> | ||
| + | | | ||
| + | <math>\begin{array}{*{10}{l}} | ||
| + | \boldsymbol\varepsilon f_{8} | ||
| + | & = && f_{8}(u, v) | ||
| + | \\[4pt] | ||
| + | & = && uv | ||
| + | \\[4pt] | ||
| + | & = && uv \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} | ||
| + | & + & uv \cdot \texttt{(} \mathrm{d}u \texttt{)} ~ \mathrm{d}v | ||
| + | & + & uv \cdot \mathrm{d}u ~ \texttt{(} \mathrm{d}v \texttt{)} | ||
| + | & + & uv \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | \\[20pt] | ||
| + | \boldsymbol\varepsilon f_{8} | ||
| + | & = && uv \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} | ||
| + | \\[4pt] | ||
| + | && + & uv \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} | ||
| + | \\[4pt] | ||
| + | && + & uv \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} | ||
| + | \\[4pt] | ||
| + | && + & uv \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} | ||
| + | \end{array}\!</math> | ||
| + | |} | ||
| − | < | + | <br> |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | =====Computation of E''f''<sub>8</sub>===== | |
| − | < | + | <br> |
| − | |||
| − | + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" | |
| + | |+ style="height:30px" | <math>\text{Table F8.2-i} ~~ \text{Computation of}~ \mathrm{E}f_{8} ~\text{(Method 1)}\!</math> | ||
| + | | | ||
| + | <math>\begin{array}{*{9}{l}} | ||
| + | \mathrm{E}f_{8} | ||
| + | & = & f_{8}(u + \mathrm{d}u, v + \mathrm{d}v) | ||
| + | \\[4pt] | ||
| + | & = & \texttt{(} u \texttt{,} \mathrm{d}u \texttt{)(} v \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | \\[4pt] | ||
| + | & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot f_{8}(\texttt{(} \mathrm{d}u \texttt{)}, \texttt{(} \mathrm{d}v \texttt{)}) | ||
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot f_{8}(\texttt{(} \mathrm{d}u \texttt{)}, \mathrm{d}v) | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot f_{8}(\mathrm{d}u, \texttt{(} \mathrm{d}v \texttt{)}) | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot f_{8}(\mathrm{d}u, \mathrm{d}v) | ||
| + | \\[4pt] | ||
| + | & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} ~ \mathrm{d}v | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \mathrm{d}u ~ \texttt{(} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | \\[20pt] | ||
| + | \mathrm{E}f_{8} | ||
| + | & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} | ||
| + | \\[4pt] | ||
| + | &&& + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} ~ \mathrm{d}v | ||
| + | \\[4pt] | ||
| + | &&&&& + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \mathrm{d}u ~ \texttt{(} \mathrm{d}v \texttt{)} | ||
| + | \\[4pt] | ||
| + | &&&&&&& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | \end{array}\!</math> | ||
| + | |} | ||
| − | + | <br> | |
| − | + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" | |
| − | </ | + | |+ style="height:30px" | <math>\text{Table F8.2-ii} ~~ \text{Computation of}~ \mathrm{E}f_{8} ~\text{(Method 2)}\!</math> |
| + | | | ||
| + | <math>\begin{array}{*{9}{c}} | ||
| + | \mathrm{E}f_{8} | ||
| + | & = & (u + \mathrm{d}u) \cdot (v + \mathrm{d}v) | ||
| + | \\[6pt] | ||
| + | & = & u \cdot v | ||
| + | & + & u \cdot \mathrm{d}v | ||
| + | & + & v \cdot \mathrm{d}u | ||
| + | & + & \mathrm{d}u \cdot \mathrm{d}v | ||
| + | \\[6pt] | ||
| + | \mathrm{E}f_{8} | ||
| + | & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} ~ \mathrm{d}v | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \mathrm{d}u ~ \texttt{(} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | \end{array}\!</math> | ||
| + | |} | ||
| − | + | <br> | |
| − | + | =====Computation of D''f''<sub>8</sub>===== | |
| − | < | + | <br> |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" | |
| + | |+ style="height:30px" | <math>\text{Table F8.3-i} ~~ \text{Computation of}~ \mathrm{D}f_{8} ~\text{(Method 1)}\!</math> | ||
| + | | | ||
| + | <math>\begin{array}{*{10}{l}} | ||
| + | \mathrm{D}f_{8} | ||
| + | & = && \mathrm{E}f_{8} | ||
| + | & + & \boldsymbol\varepsilon f_{8} | ||
| + | \\[4pt] | ||
| + | & = && f_{8}(u + \mathrm{d}u, v + \mathrm{d}v) | ||
| + | & + & f_{8}(u, v) | ||
| + | \\[4pt] | ||
| + | & = && \texttt{(} u \texttt{,} \mathrm{d}u \texttt{)(} v \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | & + & uv | ||
| + | \\[20pt] | ||
| + | \mathrm{D}f_{8} | ||
| + | & = && 0 | ||
| + | & + & 0 | ||
| + | & + & 0 | ||
| + | & + & 0 | ||
| + | \\[4pt] | ||
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~~} | ||
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} | ||
| + | & + & 0 | ||
| + | & + & 0 | ||
| + | \\[4pt] | ||
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)~} | ||
| + | & + & 0 | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} | ||
| + | & + & 0 | ||
| + | \\[4pt] | ||
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~~} | ||
| + | & + & 0 | ||
| + | & + & 0 | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~} \mathrm{d}v \texttt{~} | ||
| + | \\[20pt] | ||
| + | \mathrm{D}f_{8} | ||
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} | ||
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~} \mathrm{d}v \texttt{~} | ||
| + | \end{array}\!</math> | ||
| + | |} | ||
| − | < | + | <br> |
| − | |||
| − | + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" | |
| + | |+ style="height:30px" | <math>\text{Table F8.3-ii} ~~ \text{Computation of}~ \mathrm{D}f_{8} ~\text{(Method 2)}\!</math> | ||
| + | | | ||
| + | <math>\begin{array}{*{9}{l}} | ||
| + | \mathrm{D}f_{8} | ||
| + | & = & \boldsymbol\varepsilon f_{8} | ||
| + | & + & \mathrm{E}f_{8} | ||
| + | \\[6pt] | ||
| + | & = & f_{8}(u, v) | ||
| + | & + & f_{8}(u + \mathrm{d}u, v + \mathrm{d}v) | ||
| + | \\[6pt] | ||
| + | & = & uv | ||
| + | & + & \texttt{(} u \texttt{,} \mathrm{d}u \texttt{)(} v \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | \\[6pt] | ||
| + | & = & 0 | ||
| + | & + & u \cdot \mathrm{d}v | ||
| + | & + & v \cdot \mathrm{d}u | ||
| + | & + & \mathrm{d}u ~ \mathrm{d}v | ||
| + | \\[6pt] | ||
| + | \mathrm{D}f_{8} | ||
| + | & = & 0 | ||
| + | & + & u \cdot \texttt{(} \mathrm{d}u \texttt{)} ~ \mathrm{d}v | ||
| + | & + & v \cdot \mathrm{d}u ~ \texttt{(} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{((} u \texttt{,} v \texttt{))} \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | \end{array}</math> | ||
| + | |} | ||
| − | + | <br> | |
| − | + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" | |
| − | </ | + | |+ style="height:30px" | <math>\text{Table F8.3-iii} ~~ \text{Computation of}~ \mathrm{D}f_{8} ~\text{(Method 3)}\!</math> |
| + | | | ||
| + | <math>\begin{array}{c*{9}{l}} | ||
| + | \mathrm{D}f_{8} | ||
| + | & = & \boldsymbol\varepsilon f_{8} ~+~ \mathrm{E}f_{8} | ||
| + | \\[20pt] | ||
| + | \boldsymbol\varepsilon f_{8} | ||
| + | & = & u \,\cdot\, v \,\cdot\, \texttt{(} \mathrm{d}u \texttt{)} \texttt{(} \mathrm{d}v \texttt{)} | ||
| + | & + & u \,\cdot\, v \,\cdot\, \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v | ||
| + | & + & ~ u \,\cdot\, v \,\cdot\, \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} | ||
| + | & + & ~ u \;\cdot\; v \;\cdot\; \mathrm{d}u ~ \mathrm{d}v | ||
| + | \\[6pt] | ||
| + | \mathrm{E}f_{8} | ||
| + | & = & u \,\cdot\, v \,\cdot\, \texttt{(} \mathrm{d}u \texttt{)} \texttt{(} \mathrm{d}v \texttt{)} | ||
| + | & + & u ~ \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v | ||
| + | & + & \texttt{(} u \texttt{)} ~ v \,\cdot\, \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{)} \texttt{(} v \texttt{)} \cdot\, \mathrm{d}u ~ \mathrm{d}v | ||
| + | \\[20pt] | ||
| + | \mathrm{D}f_{8} | ||
| + | & = & ~ ~ 0 ~~ \cdot ~ \texttt{(} \mathrm{d}u \texttt{)} \texttt{(} \mathrm{d}v \texttt{)} | ||
| + | & + & ~ ~ u ~~ \cdot ~ \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v | ||
| + | & + & ~ ~ ~ v ~~ \cdot ~ \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{((} u \texttt{,} v \texttt{))} \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | \end{array}\!</math> | ||
| + | |} | ||
| − | === | + | =====Computation of d''f''<sub>8</sub>===== |
| − | + | <br> | |
| − | + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" | |
| + | |+ style="height:30px" | <math>\text{Table F8.4} ~~ \text{Computation of}~ \mathrm{d}f_{8}\!</math> | ||
| + | | | ||
| + | <math>\begin{array}{c*{8}{l}} | ||
| + | \mathrm{D}f_{8} | ||
| + | & = & uv \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} | ||
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} ~ \mathrm{d}v | ||
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u ~ \texttt{(} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | \\[6pt] | ||
| + | \Downarrow | ||
| + | \\[6pt] | ||
| + | \mathrm{d}f_{8} | ||
| + | & = & uv \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}v | ||
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 | ||
| + | \end{array}</math> | ||
| + | |} | ||
| − | < | + | <br> |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | =====Computation of r''f''<sub>8</sub>===== | |
| − | + | <br> | |
| − | + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" | |
| − | + | |+ style="height:30px" | <math>\text{Table F8.5} ~~ \text{Computation of}~ \mathrm{r}f_{8}\!</math> | |
| − | + | | | |
| − | | | + | <math>\begin{array}{c*{8}{l}} |
| − | | | + | \mathrm{r}f_{8} & = & \mathrm{D}f_{8} ~+~ \mathrm{d}f_{8} |
| − | + | \\[20pt] | |
| − | + | \mathrm{D}f_{8} | |
| − | + | & = & uv \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} | |
| − | + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v | |
| − | + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} | |
| − | + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v | |
| − | + | \\[6pt] | |
| − | </ | + | \mathrm{d}f_{8} |
| + | & = & uv \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}v | ||
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 | ||
| + | \\[20pt] | ||
| + | \mathrm{r}f_{8} | ||
| + | & = & uv \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | \end{array}</math> | ||
| + | |} | ||
| − | + | <br> | |
| − | + | =====Computation Summary for Conjunction===== | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | <br> | |
| − | + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" | |
| − | + | |+ style="height:30px" | <math>\text{Table F8.6} ~~ \text{Computation Summary for}~ f_{8}(u, v) = uv\!</math> | |
| + | | | ||
| + | <math>\begin{array}{c*{8}{l}} | ||
| + | \boldsymbol\varepsilon f_{8} | ||
| + | & = & uv \cdot 1 | ||
| + | & + & u \texttt{(} v \texttt{)} \cdot 0 | ||
| + | & + & \texttt{(} u \texttt{)} v \cdot 0 | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 | ||
| + | \\[6pt] | ||
| + | \mathrm{E}f_{8} | ||
| + | & = & uv \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} | ||
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v | ||
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | \\[6pt] | ||
| + | \mathrm{D}f_{8} | ||
| + | & = & uv \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} | ||
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v | ||
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | \\[6pt] | ||
| + | \mathrm{d}f_{8} | ||
| + | & = & uv \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}v | ||
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 | ||
| + | \\[6pt] | ||
| + | \mathrm{r}f_{8} | ||
| + | & = & uv \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | \end{array}</math> | ||
| + | |} | ||
| − | + | <br> | |
| − | < | + | ====Operator Maps for the Logical Equality ''f''<sub>9</sub>(u, v)==== |
| − | |||
| − | + | =====Computation of ε''f''<sub>9</sub>===== | |
| − | </ | ||
| − | + | <br> | |
| − | + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" | |
| − | + | |+ style="height:30px" | <math>\text{Table F9.1} ~~ \text{Computation of}~ \boldsymbol\varepsilon f_{9}\!</math> | |
| − | + | | | |
| + | <math>\begin{array}{*{10}{l}} | ||
| + | \boldsymbol\varepsilon f_{9} | ||
| + | & = && f_{9}(u, v) | ||
| + | \\[4pt] | ||
| + | & = && \texttt{((} u \texttt{,~} v \texttt{))} | ||
| + | \\[4pt] | ||
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot f_{9}(1, 1) | ||
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot f_{9}(1, 0) | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot f_{9}(0, 1) | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot f_{9}(0, 0) | ||
| + | \\[4pt] | ||
| + | & = && u v & + & 0 & + & 0 & + & \texttt{(} u \texttt{)(} v \texttt{)} | ||
| + | \\[20pt] | ||
| + | \boldsymbol\varepsilon f_{9} | ||
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} | ||
| + | & + & 0 | ||
| + | & + & 0 | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} | ||
| + | \\[4pt] | ||
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} | ||
| + | & + & 0 | ||
| + | & + & 0 | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} | ||
| + | \\[4pt] | ||
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} | ||
| + | & + & 0 | ||
| + | & + & 0 | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} | ||
| + | \\[4pt] | ||
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} | ||
| + | & + & 0 | ||
| + | & + & 0 | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} | ||
| + | \end{array}</math> | ||
| + | |} | ||
| − | + | <br> | |
| − | + | =====Computation of E''f''<sub>9</sub>===== | |
| − | + | <br> | |
| − | + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" | |
| + | |+ style="height:30px" | <math>\text{Table F9.2} ~~ \text{Computation of}~ \mathrm{E}f_{9}\!</math> | ||
| + | | | ||
| + | <math>\begin{array}{*{10}{l}} | ||
| + | \mathrm{E}f_{9} | ||
| + | & = && f_{9}(u + \mathrm{d}u, v + \mathrm{d}v) | ||
| + | \\[4pt] | ||
| + | & = && \texttt{(((} u \texttt{,} \mathrm{d}u \texttt{),(} v \texttt{,} \mathrm{d}v \texttt{)))} | ||
| + | \\[4pt] | ||
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } \!\cdot\! f_{9}(\texttt{(} \mathrm{d}u \texttt{)}, \texttt{(} \mathrm{d}v \texttt{)}) | ||
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \!\cdot\! f_{9}(\texttt{(} \mathrm{d}u \texttt{)}, \texttt{ } \mathrm{d}v \texttt{ }) | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! f_{9}(\texttt{ } \mathrm{d}u \texttt{ }, \texttt{(} \mathrm{d}v \texttt{)}) | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! f_{9}(\texttt{ } \mathrm{d}u \texttt{ }, \texttt{ } \mathrm{d}v \texttt{ }) | ||
| + | \\[4pt] | ||
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } \!\cdot\! \texttt{((} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{))} | ||
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \!\cdot\! \texttt{ (} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{) } | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! \texttt{ (} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{) } | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{((} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{))} | ||
| + | \\[20pt] | ||
| + | \mathrm{E}f_{9} | ||
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} | ||
| + | & + & 0 | ||
| + | & + & 0 | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} | ||
| + | \\[4pt] | ||
| + | && + & 0 | ||
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} | ||
| + | & + & 0 | ||
| + | \\[4pt] | ||
| + | && + & 0 | ||
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} | ||
| + | & + & 0 | ||
| + | \\[4pt] | ||
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} | ||
| + | & + & 0 | ||
| + | & + & 0 | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} | ||
| + | \end{array}</math> | ||
| + | |} | ||
| − | < | + | <br> |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | =====Computation of D''f''<sub>9</sub>===== | |
| − | < | + | <br> |
| − | |||
| − | |||
| − | + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" | |
| + | |+ style="height:30px" | <math>\text{Table F9.3-i} ~~ \text{Computation of}~ \mathrm{D}f_{9} ~\text{(Method 1)}\!</math> | ||
| + | | | ||
| + | <math>\begin{array}{*{10}{l}} | ||
| + | \mathrm{D}f_{9} | ||
| + | & = && \mathrm{E}f_{9} | ||
| + | & + & \boldsymbol\varepsilon f_{9} | ||
| + | \\[4pt] | ||
| + | & = && f_{9}(u + \mathrm{d}u, v + \mathrm{d}v) | ||
| + | & + & f_{9}(u, v) | ||
| + | \\[4pt] | ||
| + | & = && \texttt{(((} u \texttt{,} \mathrm{d}u \texttt{),(} v \texttt{,} \mathrm{d}v \texttt{)))} | ||
| + | & + & \texttt{((} u \texttt{,} v \texttt{))} | ||
| + | \\[20pt] | ||
| + | \mathrm{D}f_{9} | ||
| + | & = && 0 | ||
| + | & + & 0 | ||
| + | & + & 0 | ||
| + | & + & 0 | ||
| + | \\[4pt] | ||
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} | ||
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} | ||
| + | \\[4pt] | ||
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \!\cdot\! \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \!\cdot\! \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} | ||
| + | \\[4pt] | ||
| + | && + & 0 | ||
| + | & + & 0 | ||
| + | & + & 0 | ||
| + | & + & 0 | ||
| + | \\[20pt] | ||
| + | \mathrm{D}f_{9} | ||
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } \!\cdot\! \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \!\cdot\! \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | \end{array}\!</math> | ||
| + | |} | ||
| − | < | + | <br> |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" | |
| + | |+ style="height:30px" | <math>\text{Table F9.3-ii} ~~ \text{Computation of}~ \mathrm{D}f_{9} ~\text{(Method 2)}\!</math> | ||
| + | | | ||
| + | <math>\begin{array}{*{9}{l}} | ||
| + | \mathrm{D}f_{9} | ||
| + | & = & 0 \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | & + & 1 \cdot \mathrm{d}u ~ \texttt{(} \mathrm{d}v \texttt{)} | ||
| + | & + & 1 \cdot \texttt{(} \mathrm{d}u \texttt{)} ~ \mathrm{d}v | ||
| + | & + & 0 \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} | ||
| + | \end{array}</math> | ||
| + | |} | ||
| − | + | <br> | |
| − | < | + | =====Computation of d''f''<sub>9</sub>===== |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | </ | ||
| − | + | <br> | |
| − | + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" | |
| + | |+ style="height:30px" | <math>\text{Table F9.4} ~~ \text{Computation of}~ \mathrm{d}f_{9}\!</math> | ||
| + | | | ||
| + | <math>\begin{array}{c*{8}{l}} | ||
| + | \mathrm{D}f_{9} | ||
| + | & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | \\[6pt] | ||
| + | \Downarrow | ||
| + | \\[6pt] | ||
| + | \mathrm{d}f_{9} | ||
| + | & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | \end{array}</math> | ||
| + | |} | ||
| − | < | + | <br> |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | =====Computation of r''f''<sub>9</sub>===== | |
| − | + | <br> | |
| − | < | + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" |
| − | Table 5 | + | |+ style="height:30px" | <math>\text{Table F9.5} ~~ \text{Computation of}~ \mathrm{r}f_{9}\!</math> |
| − | + | | | |
| − | + | <math>\begin{array}{c*{8}{l}} | |
| − | + | \mathrm{r}f_{9} & = & \mathrm{D}f_{9} ~+~ \mathrm{d}f_{9} | |
| − | + | \\[20pt] | |
| − | + | \mathrm{D}f_{9} | |
| − | + | & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | |
| − | + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | |
| − | + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | |
| − | + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | |
| − | + | \\[6pt] | |
| − | + | \mathrm{d}f_{9} | |
| − | </ | + | & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | \\[20pt] | ||
| + | \mathrm{r}f_{9} | ||
| + | & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot 0 | ||
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot 0 | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot 0 | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 | ||
| + | \end{array}</math> | ||
| + | |} | ||
| − | + | <br> | |
| − | + | =====Computation Summary for Equality===== | |
| − | < | + | <br> |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" | |
| + | |+ style="height:30px" | <math>\text{Table F9.6} ~~ \text{Computation Summary for}~ f_{9}(u, v) = \texttt{((} u \texttt{,} v \texttt{))}\!</math> | ||
| + | | | ||
| + | <math>\begin{array}{c*{8}{l}} | ||
| + | \boldsymbol\varepsilon f_{9} | ||
| + | & = & uv \cdot 1 | ||
| + | & + & u \texttt{(} v \texttt{)} \cdot 0 | ||
| + | & + & \texttt{(} u \texttt{)} v \cdot 0 | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 1 | ||
| + | \\[6pt] | ||
| + | \mathrm{E}f_{9} | ||
| + | & = & uv \cdot \texttt{((} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{))} | ||
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{))} | ||
| + | \\[6pt] | ||
| + | \mathrm{D}f_{9} | ||
| + | & = & uv \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | \\[6pt] | ||
| + | \mathrm{d}f_{9} | ||
| + | & = & uv \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | \\[6pt] | ||
| + | \mathrm{r}f_{9} | ||
| + | & = & uv \cdot 0 | ||
| + | & + & u \texttt{(} v \texttt{)} \cdot 0 | ||
| + | & + & \texttt{(} u \texttt{)} v \cdot 0 | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 | ||
| + | \end{array}</math> | ||
| + | |} | ||
| − | < | + | <br> |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | ====Operator Maps for the Logical Implication ''f''<sub>11</sub>(u, v)==== | |
| − | + | =====Computation of ε''f''<sub>11</sub>===== | |
| − | < | + | <br> |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" | |
| + | |+ style="height:30px" | <math>\text{Table F11.1} ~~ \text{Computation of}~ \boldsymbol\varepsilon f_{11}\!</math> | ||
| + | | | ||
| + | <math>\begin{array}{*{10}{l}} | ||
| + | \boldsymbol\varepsilon f_{11} | ||
| + | & = && f_{11}(u, v) | ||
| + | \\[4pt] | ||
| + | & = && \texttt{(} u \texttt{(} v \texttt{))} | ||
| + | \\[4pt] | ||
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot f_{11}(1, 1) | ||
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot f_{11}(1, 0) | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot f_{11}(0, 1) | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot f_{11}(0, 0) | ||
| + | \\[4pt] | ||
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } | ||
| + | & + & 0 | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} | ||
| + | \\[20pt] | ||
| + | \boldsymbol\varepsilon f_{11} | ||
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} | ||
| + | & + & 0 | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} | ||
| + | \\[4pt] | ||
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} | ||
| + | & + & 0 | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} | ||
| + | \\[4pt] | ||
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} | ||
| + | & + & 0 | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} | ||
| + | \\[4pt] | ||
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} | ||
| + | & + & 0 | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} | ||
| + | \end{array}\!</math> | ||
| + | |} | ||
| − | < | + | <br> |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | =====Computation of E''f''<sub>11</sub>===== | |
| − | + | <br> | |
| − | < | + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" |
| − | Table | + | |+ style="height:30px" | <math>\text{Table F11.2} ~~ \text{Computation of}~ \mathrm{E}f_{11}\!</math> |
| − | + | | | |
| − | + | <math>\begin{array}{*{10}{l}} | |
| − | + | \mathrm{E}f_{11} | |
| − | + | & = && f_{11}(u + \mathrm{d}u, v + \mathrm{d}v) | |
| − | + | \\[4pt] | |
| − | + | & = && | |
| − | + | \texttt{(} | |
| − | + | \\ | |
| − | + | &&& \qquad \texttt{(} u \texttt{,} \mathrm{d}u \texttt{)} | |
| − | + | \\ | |
| − | + | &&& \texttt{(} | |
| − | + | \\ | |
| − | + | &&& \qquad \texttt{(} v \texttt{,} \mathrm{d}v \texttt{)} | |
| − | + | \\ | |
| − | + | &&& \texttt{))} | |
| − | + | \\[4pt] | |
| − | + | & = && | |
| − | + | u v | |
| − | + | \!\cdot\! | |
| − | + | \texttt{((} \mathrm{d}u \texttt{)((} \mathrm{d}v \texttt{)))} | |
| − | + | & + & | |
| − | </ | + | u \texttt{(} v \texttt{)} |
| + | \!\cdot\! | ||
| + | \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} | ||
| + | & + & | ||
| + | \texttt{(} u \texttt{)} v | ||
| + | \!\cdot\! | ||
| + | \texttt{(} \mathrm{d}u \texttt{((} \mathrm{d}v \texttt{)))} | ||
| + | & + & | ||
| + | \texttt{(} u \texttt{)(} v \texttt{)} | ||
| + | \!\cdot\! | ||
| + | \texttt{(} \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{))} | ||
| + | \\[4pt] | ||
| + | & = && | ||
| + | u v | ||
| + | \!\cdot\! | ||
| + | \texttt{((} \mathrm{d}u \texttt{)} \mathrm{d}v \texttt{)} | ||
| + | & + & | ||
| + | u \texttt{(} v \texttt{)} | ||
| + | \!\cdot\! | ||
| + | \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} | ||
| + | & + & | ||
| + | \texttt{(} u \texttt{)} v | ||
| + | \!\cdot\! | ||
| + | \texttt{(} \mathrm{d}u ~ \mathrm{d}v \texttt{)} | ||
| + | & + & | ||
| + | \texttt{(} u \texttt{)(} v \texttt{)} | ||
| + | \!\cdot\! | ||
| + | \texttt{(} \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{))} | ||
| + | \\[20pt] | ||
| + | \mathrm{E}f_{11} | ||
| + | & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} | ||
| + | & + & 0 | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} | ||
| + | \\[4pt] | ||
| + | && + & 0 | ||
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} | ||
| + | \\[4pt] | ||
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} | ||
| + | & + & 0 | ||
| + | \\[4pt] | ||
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} | ||
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} | ||
| + | & + & 0 | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} | ||
| + | \end{array}</math> | ||
| + | |} | ||
| − | + | <br> | |
| − | < | + | =====Computation of D''f''<sub>11</sub>===== |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | </ | ||
| − | + | <br> | |
| − | + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" | |
| + | |+ style="height:30px" | <math>\text{Table F11.3-i} ~~ \text{Computation of}~ \mathrm{D}f_{11} ~\text{(Method 1)}\!</math> | ||
| + | | | ||
| + | <math>\begin{array}{*{10}{l}} | ||
| + | \mathrm{D}f_{11} | ||
| + | & = && \mathrm{E}f_{11} | ||
| + | & + & \boldsymbol\varepsilon f_{11} | ||
| + | \\[4pt] | ||
| + | & = && f_{11}(u + \mathrm{d}u, v + \mathrm{d}v) | ||
| + | & + & f_{11}(u, v) | ||
| + | \\[4pt] | ||
| + | & = && | ||
| + | \texttt{(} \texttt{(} u \texttt{,} \mathrm{d}u \texttt{)} | ||
| + | \texttt{(} \texttt{(} v \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | \texttt{))} | ||
| + | & + & | ||
| + | \texttt{(} u \texttt{(} v \texttt{))} | ||
| + | \\[20pt] | ||
| + | \mathrm{D}f_{11} | ||
| + | & = && 0 | ||
| + | & + & 0 | ||
| + | & + & 0 | ||
| + | & + & 0 | ||
| + | \\[4pt] | ||
| + | && + & u v \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v | ||
| + | & + & u \texttt{(} v \texttt{)} \!\cdot\! \texttt{~(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~~} | ||
| + | & + & 0 | ||
| + | & + & 0 | ||
| + | \\[4pt] | ||
| + | && + & 0 | ||
| + | & + & u \texttt{(} v \texttt{)} \!\cdot\! \texttt{~~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)~} | ||
| + | & + & 0 | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} | ||
| + | \\[4pt] | ||
| + | && + & 0 | ||
| + | & + & u \texttt{(} v \texttt{)} \!\cdot\! \texttt{~~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~~} | ||
| + | & + & \texttt{(} u \texttt{)} v \!\cdot\! \mathrm{d}u ~ \mathrm{d}v | ||
| + | & + & 0 | ||
| + | \\[20pt] | ||
| + | \mathrm{D}f_{11} | ||
| + | & = && u v \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v | ||
| + | & + & u \texttt{(} v \texttt{)} \!\cdot\! \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} | ||
| + | & + & \texttt{(} u \texttt{)} v \!\cdot\! \mathrm{d}u ~ \mathrm{d}v | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} | ||
| + | \end{array}</math> | ||
| + | |} | ||
| − | + | <br> | |
| − | + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" | |
| + | |+ style="height:30px" | <math>\text{Table F11.3-ii} ~~ \text{Computation of}~ \mathrm{D}f_{11} ~\text{(Method 2)}\!</math> | ||
| + | | | ||
| + | <math>\begin{array}{c*{9}{l}} | ||
| + | \mathrm{D}f_{11} | ||
| + | & = & \boldsymbol\varepsilon f_{11} ~+~ \mathrm{E}f_{11} | ||
| + | \\[20pt] | ||
| + | \boldsymbol\varepsilon f_{11} | ||
| + | & = & u v \cdot 1 | ||
| + | & + & u \texttt{(} v \texttt{)} \cdot 0 | ||
| + | & + & \texttt{(} u \texttt{)} v \cdot 1 | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 1 | ||
| + | \\[6pt] | ||
| + | \mathrm{E}f_{11} | ||
| + | & = & | ||
| + | u v | ||
| + | \cdot | ||
| + | \texttt{((} \mathrm{d}u \texttt{)} \mathrm{d}v \texttt{)} | ||
| + | & + & | ||
| + | u \texttt{(} v \texttt{)} | ||
| + | \cdot | ||
| + | \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} | ||
| + | & + & | ||
| + | \texttt{(} u \texttt{)} v | ||
| + | \cdot | ||
| + | \texttt{(} \mathrm{d}u ~ \mathrm{d}v \texttt{)} | ||
| + | & + & | ||
| + | \texttt{(} u \texttt{)(} v \texttt{)} | ||
| + | \cdot | ||
| + | \texttt{(} \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{))} | ||
| + | \\[20pt] | ||
| + | \mathrm{D}f_{11} | ||
| + | & = & | ||
| + | u v | ||
| + | \cdot | ||
| + | \texttt{~(} \mathrm{d}u \texttt{)} \mathrm{d}v \texttt{~} | ||
| + | & + & | ||
| + | u \texttt{(} v \texttt{)} | ||
| + | \cdot | ||
| + | \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} | ||
| + | & + & | ||
| + | \texttt{(} u \texttt{)} v | ||
| + | \cdot | ||
| + | \texttt{~} \mathrm{d}u ~ \mathrm{d}v \texttt{~} | ||
| + | & + & | ||
| + | \texttt{(} u \texttt{)(} v \texttt{)} | ||
| + | \cdot | ||
| + | \texttt{~} \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)~} | ||
| + | \end{array}</math> | ||
| + | |} | ||
| − | + | <br> | |
| − | + | =====Computation of d''f''<sub>11</sub>===== | |
| − | < | + | <br> |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" | |
| + | |+ style="height:30px" | <math>\text{Table F11.4} ~~ \text{Computation of}~ \mathrm{d}f_{11}\!</math> | ||
| + | | | ||
| + | <math>\begin{array}{c*{8}{l}} | ||
| + | \mathrm{D}f_{11} | ||
| + | & = & u v \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v | ||
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} | ||
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} | ||
| + | \\[6pt] | ||
| + | \Downarrow | ||
| + | \\[6pt] | ||
| + | \mathrm{d}f_{11} | ||
| + | & = & u v \cdot \mathrm{d}v | ||
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | & + & 0 | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u | ||
| + | \end{array}</math> | ||
| + | |} | ||
| − | < | + | <br> |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | =====Computation of r''f''<sub>11</sub>===== | |
| − | < | + | <br> |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" | |
| + | |+ style="height:30px" | <math>\text{Table F11.5} ~~ \text{Computation of}~ \mathrm{r}f_{11}\!</math> | ||
| + | | | ||
| + | <math>\begin{array}{c*{8}{l}} | ||
| + | \mathrm{r}f_{11} & = & \mathrm{D}f_{11} ~+~ \mathrm{d}f_{11} | ||
| + | \\[20pt] | ||
| + | \mathrm{D}f_{11} | ||
| + | & = & u v \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v | ||
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} | ||
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} | ||
| + | \\[6pt] | ||
| + | \mathrm{d}f_{11} | ||
| + | & = & u v \cdot \mathrm{d}v | ||
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | & + & 0 | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u | ||
| + | \\[20pt] | ||
| + | \mathrm{r}f_{11} | ||
| + | & = & u v \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | \end{array}</math> | ||
| + | |} | ||
| − | + | <br> | |
| − | + | =====Computation Summary for Implication===== | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | <br> | |
| − | + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" | |
| + | |+ style="height:30px" | <math>\text{Table F11.6} ~~ \text{Computation Summary for}~ f_{11}(u, v) = \texttt{(} u \texttt{(} v \texttt{))}\!</math> | ||
| + | | | ||
| + | <math>\begin{array}{c*{8}{l}} | ||
| + | \boldsymbol\varepsilon f_{11} | ||
| + | & = & u v \cdot 1 | ||
| + | & + & u \texttt{(} v \texttt{)} \cdot 0 | ||
| + | & + & \texttt{(} u \texttt{)} v \cdot 1 | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 1 | ||
| + | \\[6pt] | ||
| + | \mathrm{E}f_{11} | ||
| + | & = & u v \cdot \texttt{((} \mathrm{d}u \texttt{)} \mathrm{d}v \texttt{)} | ||
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} | ||
| + | & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u ~ \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{))} | ||
| + | \\[6pt] | ||
| + | \mathrm{D}f_{11} | ||
| + | & = & u v \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v | ||
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} | ||
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} | ||
| + | \\[6pt] | ||
| + | \mathrm{d}f_{11} | ||
| + | & = & u v \cdot \mathrm{d}v | ||
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | & + & 0 | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u | ||
| + | \\[6pt] | ||
| + | \mathrm{r}f_{11} | ||
| + | & = & uv \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | \end{array}</math> | ||
| + | |} | ||
| − | < | + | <br> |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | ====Operator Maps for the Logical Disjunction ''f''<sub>14</sub>(u, v)==== | |
| − | < | + | =====Computation of ε''f''<sub>14</sub>===== |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | </ | ||
| − | + | <br> | |
| − | + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" | |
| − | + | |+ style="height:30px" | <math>\text{Table F14.1} ~~ \text{Computation of}~ \boldsymbol\varepsilon f_{14}\!</math> | |
| − | | | + | | |
| − | | . | + | <math>\begin{array}{*{10}{l}} |
| − | + | \boldsymbol\varepsilon f_{14} | |
| − | + | & = && f_{14}(u, v) | |
| − | + | \\[4pt] | |
| − | + | & = && \texttt{((} u \texttt{)(} v \texttt{))} | |
| − | + | \\[4pt] | |
| − | + | & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot f_{14}(1, 1) | |
| − | + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot f_{14}(1, 0) | |
| − | + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot f_{14}(0, 1) | |
| − | + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot f_{14}(0, 0) | |
| − | + | \\[4pt] | |
| − | + | & = && \texttt{ } u \texttt{ } v \texttt{ } | |
| − | + | & + & \texttt{ } u \texttt{ (} v \texttt{)} | |
| − | + | & + & \texttt{(} u \texttt{) } v \texttt{ } | |
| − | + | & + & 0 | |
| − | + | \\[20pt] | |
| − | + | \boldsymbol\varepsilon f_{14} | |
| − | + | & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} | |
| − | + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} | |
| − | + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} | |
| − | + | & + & 0 | |
| − | + | \\[4pt] | |
| − | + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} | |
| − | + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} | |
| − | + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} | |
| − | + | & + & 0 | |
| − | + | \\[4pt] | |
| − | + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} | |
| − | + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} | |
| − | </ | + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} |
| + | & + & 0 | ||
| + | \\[4pt] | ||
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} | ||
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} | ||
| + | & + & 0 | ||
| + | \end{array}</math> | ||
| + | |} | ||
| − | + | <br> | |
| − | < | + | =====Computation of E''f''<sub>14</sub>===== |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | </ | ||
| − | + | <br> | |
| − | + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" | |
| − | + | |+ style="height:30px" | <math>\text{Table F14.2} ~~ \text{Computation of}~ \mathrm{E}f_{14}\!</math> | |
| − | | \ | + | | |
| − | + | <math>\begin{array}{*{10}{l}} | |
| − | + | \mathrm{E}f_{14} | |
| − | + | & = && f_{14}(u + \mathrm{d}u, v + \mathrm{d}v) | |
| − | + | \\[4pt] | |
| − | + | & = && | |
| − | + | \texttt{((} | |
| − | + | \\ | |
| − | + | &&& \qquad \texttt{(} u \texttt{,} \mathrm{d}u \texttt{)} | |
| − | + | \\ | |
| − | + | &&& \texttt{)(} | |
| − | + | \\ | |
| − | + | &&& \qquad \texttt{(} v \texttt{,} \mathrm{d}v \texttt{)} | |
| − | + | \\ | |
| − | + | &&& \texttt{))} | |
| − | + | \\[4pt] | |
| − | + | & = && \texttt{ } u \texttt{ } v \texttt{ } \!\cdot\! f_{14}(\texttt{(} \mathrm{d}u \texttt{)}, \texttt{(} \mathrm{d}v \texttt{)}) | |
| − | + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \!\cdot\! f_{14}(\texttt{(} \mathrm{d}u \texttt{)}, \texttt{ } \mathrm{d}v \texttt{ }) | |
| − | + | & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! f_{14}(\texttt{ } \mathrm{d}u \texttt{ }, \texttt{(} \mathrm{d}v \texttt{)}) | |
| − | + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! f_{14}(\texttt{ } \mathrm{d}u \texttt{ }, \texttt{ } \mathrm{d}v \texttt{ }) | |
| − | + | \\[4pt] | |
| − | + | & = && \texttt{ } u \texttt{ } v \texttt{ } \!\cdot\! \texttt{(} \mathrm{d}u \texttt{~} \mathrm{d}v \texttt{)} | |
| − | + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \!\cdot\! \texttt{(} \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{))} | |
| − | + | & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! \texttt{((} \mathrm{d}u \texttt{)} \mathrm{d}v \texttt{)} | |
| − | + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} | |
| − | + | \\[20pt] | |
| − | + | \mathrm{E}f_{14} | |
| − | + | & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} | |
| − | + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} | |
| − | + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} | |
| − | + | & + & 0 | |
| − | </ | + | \\[4pt] |
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} | ||
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} | ||
| + | & + & 0 | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} | ||
| + | \\[4pt] | ||
| + | && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} | ||
| + | & + & 0 | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} | ||
| + | \\[4pt] | ||
| + | && + & 0 | ||
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} | ||
| + | \end{array}</math> | ||
| + | |} | ||
| − | + | <br> | |
| − | < | + | =====Computation of D''f''<sub>14</sub>===== |
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | <br> | |
| − | |||
| − | |||
| − | < | ||
| − | + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" | |
| + | |+ style="height:30px" | <math>\text{Table F14.3-i} ~~ \text{Computation of}~ \mathrm{D}f_{14} ~\text{(Method 1)}\!</math> | ||
| + | | | ||
| + | <math>\begin{array}{*{10}{l}} | ||
| + | \mathrm{D}f_{14} | ||
| + | & = && \mathrm{E}f_{14} | ||
| + | & + & \boldsymbol\varepsilon f_{14} | ||
| + | \\[4pt] | ||
| + | & = && f_{14}(u + \mathrm{d}u, v + \mathrm{d}v) | ||
| + | & + & f_{14}(u, v) | ||
| + | \\[4pt] | ||
| + | & = && \texttt{(((} u \texttt{,} \mathrm{d}u \texttt{))((} v \texttt{,} \mathrm{d}v \texttt{)))} | ||
| + | & + & \texttt{((} u \texttt{)(} v \texttt{))} | ||
| + | \\[20pt] | ||
| + | \mathrm{D}f_{14} | ||
| + | & = && 0 | ||
| + | & + & 0 | ||
| + | & + & 0 | ||
| + | & + & 0 | ||
| + | \\[4pt] | ||
| + | && + & 0 | ||
| + | & + & 0 | ||
| + | & + & \texttt{(} u \texttt{)} v \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{~(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~~} | ||
| + | \\[4pt] | ||
| + | && + & 0 | ||
| + | & + & u \texttt{(} v \texttt{)} \!\cdot\! \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} | ||
| + | & + & 0 | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{~~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)~} | ||
| + | \\[4pt] | ||
| + | && + & uv \!\cdot\! \mathrm{d}u ~ \mathrm{d}v | ||
| + | & + & 0 | ||
| + | & + & 0 | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{~~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~~} | ||
| + | \\[20pt] | ||
| + | \mathrm{D}f_{14} | ||
| + | & = && uv \!\cdot\! \mathrm{d}u ~ \mathrm{d}v | ||
| + | & + & u \texttt{(} v \texttt{)} \!\cdot\! \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{)} v \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} | ||
| + | \end{array}</math> | ||
| + | |} | ||
| − | < | + | <br> |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" | |
| + | |+ style="height:30px" | <math>\text{Table F14.3-ii} ~~ \text{Computation of}~ \mathrm{D}f_{14} ~\text{(Method 2)}\!</math> | ||
| + | | | ||
| + | <math>\begin{array}{*{9}{l}} | ||
| + | \mathrm{D}f_{14} | ||
| + | & = & \texttt{((} u \texttt{,} v \texttt{))} \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | & + & \texttt{(} v \texttt{)} \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v | ||
| + | & + & 0 \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} | ||
| + | \end{array}</math> | ||
| + | |} | ||
| − | + | <br> | |
| − | + | =====Computation of d''f''<sub>14</sub>===== | |
| − | + | <br> | |
| − | === | + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F14.4} ~~ \text{Computation of}~ \mathrm{d}f_{14}\!</math> | ||
| + | | | ||
| + | <math>\begin{array}{c*{8}{l}} | ||
| + | \mathrm{D}f_{14} | ||
| + | & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \mathrm{d}u ~ \texttt{(} \mathrm{d}v \texttt{)} | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)} ~ \mathrm{d}v | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} | ||
| + | \\[6pt] | ||
| + | \Downarrow | ||
| + | \\[6pt] | ||
| + | \mathrm{d}f_{14} | ||
| + | & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot 0 | ||
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \mathrm{d}u | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \mathrm{d}v | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | \end{array}</math> | ||
| + | |} | ||
| − | + | <br> | |
| − | + | =====Computation of r''f''<sub>14</sub>===== | |
| − | + | <br> | |
| − | + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" | |
| − | + | |+ style="height:30px" | <math>\text{Table F14.5} ~~ \text{Computation of}~ \mathrm{r}f_{14}\!</math> | |
| − | | . | + | | |
| − | + | <math>\begin{array}{c*{8}{l}} | |
| − | + | \mathrm{r}f_{14} & = & \mathrm{D}f_{14} ~+~ \mathrm{d}f_{14} | |
| − | + | \\[20pt] | |
| − | + | \mathrm{D}f_{14} | |
| − | + | & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot \mathrm{d}u ~ \mathrm{d}v | |
| − | + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \mathrm{d}u ~ \texttt{(} \mathrm{d}v \texttt{)} | |
| − | </ | + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)} ~ \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} | ||
| + | \\[6pt] | ||
| + | \mathrm{d}f_{14} | ||
| + | & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot 0 | ||
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \mathrm{d}u | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \mathrm{d}v | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | \\[20pt] | ||
| + | \mathrm{r}f_{14} | ||
| + | & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | \end{array}</math> | ||
| + | |} | ||
| − | + | <br> | |
| − | + | =====Computation Summary for Disjunction===== | |
| − | + | <br> | |
| − | + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" | |
| − | + | |+ style="height:30px" | <math>\text{Table F14.6} ~~ \text{Computation Summary for}~ f_{14}(u, v) = \texttt{((} u \texttt{)(} v \texttt{))}\!</math> | |
| − | | . | + | | |
| − | + | <math>\begin{array}{c*{8}{l}} | |
| − | + | \boldsymbol\varepsilon f_{14} | |
| − | + | & = & uv \cdot 1 | |
| − | + | & + & u \texttt{(} v \texttt{)} \cdot 1 | |
| − | + | & + & \texttt{(} u \texttt{)} v \cdot 1 | |
| − | + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 | |
| − | + | \\[6pt] | |
| − | + | \mathrm{E}f_{14} | |
| − | + | & = & uv \cdot \texttt{(} \mathrm{d}u ~ \mathrm{d}v \texttt{)} | |
| − | + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{))} | |
| − | + | & + & \texttt{(} u \texttt{)} v \cdot \texttt{((} \mathrm{d}u \texttt{)} \mathrm{d}v \texttt{)} | |
| − | + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} | |
| − | + | \\[6pt] | |
| − | + | \mathrm{D}f_{14} | |
| − | + | & = & uv \cdot \mathrm{d}u ~ \mathrm{d}v | |
| − | + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} | |
| − | + | & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v | |
| − | </ | + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} |
| + | \\[6pt] | ||
| + | \mathrm{d}f_{14} | ||
| + | & = & uv \cdot 0 | ||
| + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u | ||
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}v | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | ||
| + | \\[6pt] | ||
| + | \mathrm{r}f_{14} | ||
| + | & = & uv \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v | ||
| + | \end{array}</math> | ||
| + | |} | ||
| − | + | <br> | |
| − | + | ===Appendix 4. Source Materials=== | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | ===Appendix 5. Various Definitions of the Tangent Vector=== | |
| − | + | ==References== | |
| − | + | * Ashby, William Ross (1956/1964), ''An Introduction to Cybernetics'', Chapman and Hall, London, UK, 1956. Reprinted, Methuen and Company, London, UK, 1964. | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | * Awbrey, J., and Awbrey, S. (1989), "Theme One : A Program of Inquiry", Unpublished Manuscript, 09 Aug 1989. [http://web.archive.org/web/20071021145200/http://ndirty.cute.fi/~karttu/Awbrey/Theme1Prog/Theme1Guide.doc Microsoft Word Document]. | |
| − | + | * Edelman, Gerald M. (1988), ''Topobiology : An Introduction to Molecular Embryology'', Basic Books, New York, NY. | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | * Leibniz, Gottfried Wilhelm, Freiherr von, ''Theodicy : Essays on the Goodness of God, The Freedom of Man, and The Origin of Evil'', Austin Farrer (ed.), E.M. Huggard (trans.), based on C.J. Gerhardt (ed.), ''Collected Philosophical Works'', 1875–1890, Routledge and Kegan Paul, London, UK, 1951. Reprinted, Open Court, La Salle, IL, 1985. | |
| − | + | * McClelland, James L., and Rumelhart, David E. (1988), ''Explorations in Parallel Distributed Processing : A Handbook of Models, Programs, and Exercises'', MIT Press, Cambridge, MA. | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | [[Category:Adaptive Systems]] | |
| − | + | [[Category:Artificial Intelligence]] | |
| − | + | [[Category:Boolean Algebra]] | |
| − | + | [[Category:Boolean Functions]] | |
| − | + | [[Category:Charles Sanders Peirce]] | |
| − | + | [[Category:Combinatorics]] | |
| − | + | [[Category:Computational Complexity]] | |
| − | + | [[Category:Computer Science]] | |
| − | + | [[Category:Cybernetics]] | |
| + | [[Category:Differential Logic]] | ||
| + | [[Category:Discrete Systems]] | ||
| + | [[Category:Dynamical Systems]] | ||
| + | [[Category:Equational Reasoning]] | ||
| + | [[Category:Formal Languages]] | ||
| + | [[Category:Formal Sciences]] | ||
| + | [[Category:Formal Systems]] | ||
| + | [[Category:Graph Theory]] | ||
| + | [[Category:Group Theory]] | ||
| + | [[Category:Inquiry]] | ||
| + | [[Category:Inquiry Driven Systems]] | ||
| + | [[Category:Knowledge Representation]] | ||
| + | [[Category:Linguistics]] | ||
| + | [[Category:Logic]] | ||
| + | [[Category:Logical Graphs]] | ||
| + | [[Category:Mathematics]] | ||
| + | [[Category:Mathematical Systems Theory]] | ||
| + | [[Category:Philosophy]] | ||
| + | [[Category:Propositional Calculus]] | ||
| + | [[Category:Science]] | ||
| + | [[Category:Semiotics]] | ||
| + | [[Category:Systems Science]] | ||
| + | [[Category:Visualization]] | ||
Latest revision as of 03:24, 27 December 2016
Author: Jon Awbrey
A differential propositional calculus is a propositional calculus extended by a set of terms for describing aspects of change and difference, for example, processes that take place in a universe of discourse or transformations that map a source universe into a target universe.
Casual Introduction
Consider the situation represented by the venn diagram in Figure 1.
| \(\text{Figure 1.} ~~ \text{Local Habitations, And Names}\!\) |
The area of the rectangle represents a universe of discourse, \(X.\!\) This might be a population of individuals having various additional properties or it might be a collection of locations that various individuals occupy. The area of the “circle” represents the individuals that have the property \(q\!\) or the locations that fall within the corresponding region \(Q.\!\) Four individuals, \(a, b, c, d,\!\) are singled out by name. It happens that \(b\!\) and \(c\!\) currently reside in region \(Q\!\) while \(a\!\) and \(d\!\) do not.
Now consider the situation represented by the venn diagram in Figure 2.
| \(\text{Figure 2.} ~~ \text{Same Names, Different Habitations}\!\) |
Figure 2 differs from Figure 1 solely in the circumstance that the object \(c\!\) is outside the region \(Q\!\) while the object \(d\!\) is inside the region \(Q.\!\) So far, there is nothing that says that our encountering these Figures in this order is other than purely accidental, but if we interpret the present sequence of frames as a “moving picture” representation of their natural order in a temporal process, then it would be natural to say that \(a\!\) and \(b\!\) have remained as they were with regard to quality \(q\!\) while \(c\!\) and \(d\!\) have changed their standings in that respect. In particular, \(c\!\) has moved from the region where \(q\!\) is \(\mathrm{true}\!\) to the region where \(q\!\) is \(\mathrm{false}\!\) while \(d\!\) has moved from the region where \(q\!\) is \(\mathrm{false}\!\) to the region where \(q\!\) is \(\mathrm{true}.\!\)
Figure 3 reprises the situation shown in Figure 1, but this time interpolates a new quality that is specifically tailored to account for the relation between Figure 1 and Figure 2.
| \(\text{Figure 3.} ~~ \text{Back, To The Future}\!\) |
This new quality, \(\mathrm{d}q,\!\) is an example of a differential quality, since its absence or presence qualifies the absence or presence of change occurring in another quality. As with any other quality, it is represented in the venn diagram by means of a “circle” that distinguishes two halves of the universe of discourse, in this case, the portions of \(X\!\) outside and inside the region \(\mathrm{d}Q.\!\)
Figure 1 represents a universe of discourse, \(X,\!\) together with a basis of discussion, \(\{ q \},\!\) for expressing propositions about the contents of that universe. Once the quality \(q\!\) is given a name, say, the symbol \({}^{\backprime\backprime} q {}^{\prime\prime},\!\) we have the basis for a formal language that is specifically cut out for discussing \(X\!\) in terms of \(q,\!\) and this formal language is more formally known as the propositional calculus with alphabet \(\{ {}^{\backprime\backprime} q {}^{\prime\prime} \}.\!\)
In the context marked by \(X\!\) and \(\{ q \}\!\) there are but four different pieces of information that can be expressed in the corresponding propositional calculus, namely, the propositions\[\mathrm{false}, ~ \lnot q, ~ q, ~ \mathrm{true}.\!\] Referring to the sample of points in Figure 1, the constant proposition \(\mathrm{false}\!\) holds of no points, the proposition \(\lnot q\!\) holds of \(a\!\) and \(d,\!\) the proposition \(q\!\) holds of \(b\!\) and \(c,\!\) and the constant proposition \(\mathrm{true}\!\) holds of all points in the sample.
Figure 3 preserves the same universe of discourse and extends the basis of discussion to a set of two qualities, \(\{ q, \mathrm{d}q \}.\!\) In parallel fashion, the initial propositional calculus is extended by means of the enlarged alphabet, \(\{ {}^{\backprime\backprime} q {}^{\prime\prime}, {}^{\backprime\backprime} \mathrm{d}q {}^{\prime\prime} \}.\!\) Any propositional calculus over two basic propositions allows for the expression of 16 propositions all together. Just by way of salient examples in the present setting, we can pick out the most informative propositions that apply to each of our sample points. Using overlines to express logical negation, these are given as follows:
\(\overline{q} ~ \overline{\mathrm{d}q}\!\) describes \(a\!\)
\(\overline{q} ~ \mathrm{d}q\!\) describes \(d\!\)
\(q ~ \overline{\mathrm{d}q}\!\) describes \(b\!\)
\(q ~ \mathrm{d}q\!\) describes \(c\!\)
Table 4 exhibits the rules of inference that give the differential quality \(\mathrm{d}q\!\) its meaning in practice.
|
\(\begin{matrix} \text{From} & \overline{q} & \text{and} & \overline{\mathrm{d}q} & \text{infer} & \overline{q} & \text{next.} \\[8pt] \text{From} & \overline{q} & \text{and} & \mathrm{d}q & \text{infer} & q & \text{next.} \\[8pt] \text{From} & q & \text{and} & \overline{\mathrm{d}q} & \text{infer} & q & \text{next.} \\[8pt] \text{From} & q & \text{and} & \mathrm{d}q & \text{infer} & \overline{q} & \text{next.} \end{matrix}\) |
Cactus Calculus
Table 5 outlines a syntax for propositional calculus based on two types of logical connectives, both of variable \(k\!\)-ary scope.
- A bracketed list of propositional expressions in the form \(\texttt{(} e_1, e_2, \ldots, e_{k-1}, e_k \texttt{)}\!\) indicates that exactly one of the propositions \(e_1, e_2, \ldots, e_{k-1}, e_k\!\) is false.
- A concatenation of propositional expressions in the form \(e_1 ~ e_2 ~ \ldots ~ e_{k-1} ~ e_k\!\) indicates that all of the propositions \(e_1, e_2, \ldots, e_{k-1}, e_k\!\) are true, in other words, that their logical conjunction is true.
| \(\text{Expression}~\!\) | \(\text{Interpretation}\!\) | \(\text{Other Notations}\!\) |
| \(\text{True}\!\) | \(1\!\) | |
| \(\texttt{(~)}\!\) | \(\text{False}\!\) | \(0\!\) |
| \(x\!\) | \(x\!\) | \(x\!\) |
| \(\texttt{(} x \texttt{)}\!\) | \(\text{Not}~ x\!\) |
\(\begin{matrix} x' \\ \tilde{x} \\ \lnot x \end{matrix}\!\) |
| \(x~y~z\!\) | \(x ~\text{and}~ y ~\text{and}~ z\!\) | \(x \land y \land z\!\) |
| \(\texttt{((} x \texttt{)(} y \texttt{)(} z \texttt{))}\!\) | \(x ~\text{or}~ y ~\text{or}~ z\!\) | \(x \lor y \lor z\!\) |
| \(\texttt{(} x ~ \texttt{(} y \texttt{))}\!\) |
\(\begin{matrix} x ~\text{implies}~ y \\ \mathrm{If}~ x ~\text{then}~ y \end{matrix}\) |
\(x \Rightarrow y\!\) |
| \(\texttt{(} x \texttt{,} y \texttt{)}\!\) |
\(\begin{matrix} x ~\text{not equal to}~ y \\ x ~\text{exclusive or}~ y \end{matrix}\) |
\(\begin{matrix} x \ne y \\ x + y \end{matrix}\) |
| \(\texttt{((} x \texttt{,} y \texttt{))}\!\) |
\(\begin{matrix} x ~\text{is equal to}~ y \\ x ~\text{if and only if}~ y \end{matrix}\) |
\(\begin{matrix} x = y \\ x \Leftrightarrow y \end{matrix}\) |
| \(\texttt{(} x \texttt{,} y \texttt{,} z \texttt{)}\!\) |
\(\begin{matrix} \text{Just one of} \\ x, y, z \\ \text{is false}. \end{matrix}\) |
\(\begin{matrix} x'y~z~ & \lor \\ x~y'z~ & \lor \\ x~y~z' & \end{matrix}\) |
| \(\texttt{((} x \texttt{),(} y \texttt{),(} z \texttt{))}\!\) |
\(\begin{matrix} \text{Just one of} \\ x, y, z \\ \text{is true}. \\ & \\ \text{Partition all} \\ \text{into}~ x, y, z. \end{matrix}\) |
\(\begin{matrix} x~y'z' & \lor \\ x'y~z' & \lor \\ x'y'z~ & \end{matrix}\) |
|
\(\begin{matrix} \texttt{((} x \texttt{,} y \texttt{),} z \texttt{)} \\ & \\ \texttt{(} x \texttt{,(} y \texttt{,} z \texttt{))} \end{matrix}\!\) |
\(\begin{matrix} \text{Oddly many of} \\ x, y, z \\ \text{are true}. \end{matrix}\!\) |
\(x + y + z\!\)
\(\begin{matrix} x~y~z~ & \lor \\ x~y'z' & \lor \\ x'y~z' & \lor \\ x'y'z~ & \end{matrix}\!\) |
| \(\texttt{(} w \texttt{,(} x \texttt{),(} y \texttt{),(} z \texttt{))}\!\) |
\(\begin{matrix} \text{Partition}~ w \\ \text{into}~ x, y, z. \\ & \\ \text{Genus}~ w ~\text{comprises} \\ \text{species}~ x, y, z. \end{matrix}\) |
\(\begin{matrix} w'x'y'z' & \lor \\ w~x~y'z' & \lor \\ w~x'y~z' & \lor \\ w~x'y'z~ & \end{matrix}\) |
All other propositional connectives can be obtained through combinations of these two forms. Strictly speaking, the concatenation form is dispensable in light of the bracket form, but it is convenient to maintain it as an abbreviation for more complicated bracket expressions. While working with expressions solely in propositional calculus, it is easiest to use plain parentheses for logical connectives. In contexts where parentheses are needed for other purposes “teletype” parentheses \(\texttt{(} \ldots \texttt{)}\!\) or barred parentheses \((\!| \ldots |\!)\) may be used for logical operators.
The briefest expression for logical truth is the empty word, abstractly denoted \(\boldsymbol\varepsilon\!\) or \(\boldsymbol\lambda\!\) in formal languages, where it forms the identity element for concatenation. It may be given visible expression in this context by means of the logically equivalent form \(\texttt{((~))},\!\) or, especially if operating in an algebraic context, by a simple \(1.\!\) Also when working in an algebraic mode, the plus sign \({+}\!\) may be used for exclusive disjunction. For example, we have the following paraphrases of algebraic expressions:
|
\(\begin{matrix} x + y ~=~ \texttt{(} x, y \texttt{)} \\[6pt] x + y + z ~=~ \texttt{((} x, y \texttt{)}, z \texttt{)} ~=~ \texttt{(} x, \texttt{(} y, z \texttt{))} \end{matrix}\) |
It is important to note that the last expressions are not equivalent to the triple bracket \(\texttt{(} x, y, z \texttt{)}.\!\)
For more information about this syntax for propositional calculus, see the entries on minimal negation operators, zeroth order logic, and Table A1 in Appendix 1.
Formal Development
The preceding discussion outlined the ideas leading to the differential extension of propositional logic. The next task is to lay out the concepts and terminology that are needed to describe various orders of differential propositional calculi.
Elementary Notions
Logical description of a universe of discourse begins with a set of logical signs. For the sake of simplicity in a first approach, assume that these logical signs are collected in the form of a finite alphabet, \(\mathfrak{A} = \{ {}^{\backprime\backprime} a_1 {}^{\prime\prime}, \ldots, {}^{\backprime\backprime} a_n {}^{\prime\prime} \}.\!\) Each of these signs is interpreted as denoting a logical feature, for instance, a property that objects in the universe of discourse may have or a proposition about objects in the universe of discourse. Corresponding to the alphabet \(\mathfrak{A}\!\) there is then a set of logical features, \(\mathcal{A} = \{ a_1, \ldots, a_n \}.\!\)
A set of logical features, \(\mathcal{A} = \{ a_1, \ldots, a_n \},\!\) affords a basis for generating an \(n\!\)-dimensional universe of discourse, written \(A^\bullet = [ \mathcal{A} ] = [ a_1, \ldots, a_n ].\!\) It is useful to consider a universe of discourse as a categorical object that incorporates both the set of points \(A = \langle a_1, \ldots, a_n \rangle\!\) and the set of propositions \(A^\uparrow = \{ f : A \to \mathbb{B} \}\!\) that are implicit with the ordinary picture of a venn diagram on \(n\!\) features. Accordingly, the universe of discourse \(A^\bullet\!\) may be regarded as an ordered pair \((A, A^\uparrow)\!\) having the type \((\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B})),\!\) and this last type designation may be abbreviated as \(\mathbb{B}^n\ +\!\to \mathbb{B},\!\) or even more succinctly as \([ \mathbb{B}^n ].\!\) For convenience, the data type of a finite set on \(n\!\) elements may be indicated by either one of the equivalent notations, \([n]\!\) or \(\mathbf{n}.\!\)
Table 6 summarizes the notations that are needed to describe ordinary propositional calculi in a systematic fashion.
| \(\text{Symbol}\!\) | \(\text{Notation}\!\) | \(\text{Description}\!\) | \(\text{Type}\!\) |
| \(\mathfrak{A}\!\) | \(\{ {}^{\backprime\backprime} a_1 {}^{\prime\prime}, \ldots, {}^{\backprime\backprime} a_n {}^{\prime\prime} \}\!\) | \(\text{Alphabet}\!\) | \([n] = \mathbf{n}\!\) |
| \(\mathcal{A}\!\) | \(\{ a_1, \ldots, a_n \}\!\) | \(\text{Basis}\!\) | \([n] = \mathbf{n}\!\) |
| \(A_i\!\) | \(\{ \texttt{(} a_i \texttt{)}, a_i \}\!\) | \(\text{Dimension}~ i\!\) | \(\mathbb{B}\!\) |
| \(A\!\) |
\(\begin{matrix} \langle \mathcal{A} \rangle \\[2pt] \langle a_1, \ldots, a_n \rangle \\[2pt] \{ (a_1, \ldots, a_n) \} \\[2pt] A_1 \times \ldots \times A_n \\[2pt] \textstyle \prod_{i=1}^n A_i \end{matrix}\) |
\(\begin{matrix} \text{Set of cells}, \\[2pt] \text{coordinate tuples}, \\[2pt] \text{points, or vectors} \\[2pt] \text{in the universe} \\[2pt] \text{of discourse} \end{matrix}\) |
\(\mathbb{B}^n\!\) |
| \(A^*\!\) | \((\mathrm{hom} : A \to \mathbb{B})\!\) | \(\text{Linear functions}\!\) | \((\mathbb{B}^n)^* \cong \mathbb{B}^n\!\) |
| \(A^\uparrow\!\) | \((A \to \mathbb{B})\!\) | \(\text{Boolean functions}\!\) | \(\mathbb{B}^n \to \mathbb{B}\!\) |
| \(A^\bullet\!\) |
\(\begin{matrix} [\mathcal{A}] \\[2pt] (A, A^\uparrow) \\[2pt] (A ~+\!\to \mathbb{B}) \\[2pt] (A, (A \to \mathbb{B})) \\[2pt] [a_1, \ldots, a_n] \end{matrix}\) |
\(\begin{matrix} \text{Universe of discourse} \\[2pt] \text{based on the features} \\[2pt] \{ a_1, \ldots, a_n \} \end{matrix}\) |
\(\begin{matrix} (\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B})) \\[2pt] (\mathbb{B}^n ~+\!\to \mathbb{B}) \\[2pt] [\mathbb{B}^n] \end{matrix}\) |
Special Classes of Propositions
A basic proposition, coordinate proposition, or simple proposition in the universe of discourse \([a_1, \ldots, a_n]\) is one of the propositions in the set \(\{ a_1, \ldots, a_n \}.\)
Among the \(2^{2^n}\) propositions in \([a_1, \ldots, a_n]\) are several families of \(2^n\!\) propositions each that take on special forms with respect to the basis \(\{ a_1, \ldots, a_n \}.\) Three of these families are especially prominent in the present context, the linear, the positive, and the singular propositions. Each family is naturally parameterized by the coordinate \(n\!\)-tuples in \(\mathbb{B}^n\) and falls into \(n + 1\!\) ranks, with a binomial coefficient \(\tbinom{n}{k}\) giving the number of propositions that have rank or weight \(k.\!\)
-
The linear propositions, \(\{ \ell : \mathbb{B}^n \to \mathbb{B} \} = (\mathbb{B}^n \xrightarrow{\ell} \mathbb{B}),\!\) may be written as sums:
\(\sum_{i=1}^n e_i ~=~ e_1 + \ldots + e_n ~\text{where}~ \left\{\begin{matrix} e_i = a_i \\ \text{or} \\ e_i = 0 \end{matrix}\right\} ~\text{for}~ i = 1 ~\text{to}~ n.\!\)
-
The positive propositions, \(\{ p : \mathbb{B}^n \to \mathbb{B} \} = (\mathbb{B}^n \xrightarrow{p} \mathbb{B}),\!\) may be written as products:
\(\prod_{i=1}^n e_i ~=~ e_1 \cdot \ldots \cdot e_n ~\text{where}~ \left\{\begin{matrix} e_i = a_i \\ \text{or} \\ e_i = 1 \end{matrix}\right\} ~\text{for}~ i = 1 ~\text{to}~ n.\!\)
-
The singular propositions, \(\{ \mathbf{x} : \mathbb{B}^n \to \mathbb{B} \} = (\mathbb{B}^n \xrightarrow{s} \mathbb{B}),\!\) may be written as products:
\(\prod_{i=1}^n e_i ~=~ e_1 \cdot \ldots \cdot e_n ~\text{where}~ \left\{\begin{matrix} e_i = a_i \\ \text{or} \\ e_i = \texttt{(} a_i \texttt{)} \end{matrix}\right\} ~\text{for}~ i = 1 ~\text{to}~ n.\!\)
In each case the rank \(k\!\) ranges from \(0\!\) to \(n\!\) and counts the number of positive appearances of the coordinate propositions \(a_1, \ldots, a_n\!\) in the resulting expression. For example, for \(n = 3,~\!\) the linear proposition of rank \(0\!\) is \(0,\!\) the positive proposition of rank \(0\!\) is \(1,\!\) and the singular proposition of rank \(0\!\) is \(\texttt{(} a_1 \texttt{)} \texttt{(} a_2 \texttt{)} \texttt{(} a_3 \texttt{)}.\!\)
The basic propositions \(a_i : \mathbb{B}^n \to \mathbb{B}\!\) are both linear and positive. So these two kinds of propositions, the linear and the positive, may be viewed as two different ways of generalizing the class of basic propositions.
Finally, it is important to note that all of the above distinctions are relative to the choice of a particular logical basis \(\mathcal{A} = \{ a_1, \ldots, a_n \}.\!\) For example, a singular proposition with respect to the basis \(\mathcal{A}\!\) will not remain singular if \(\mathcal{A}\!\) is extended by a number of new and independent features. Even if one keeps to the original set of pairwise options \(\{ a_i \} \cup \{ \texttt{(} a_i \texttt{)} \}\!\) to pick out a new basis, the sets of linear propositions and positive propositions are both determined by the choice of basic propositions, and this whole determination is tantamount to the purely conventional choice of a cell as origin.
Differential Extensions
An initial universe of discourse, \(A^\bullet,\) supplies the groundwork for any number of further extensions, beginning with the first order differential extension, \(\mathrm{E}A^\bullet.\) The construction of \(\mathrm{E}A^\bullet\) can be described in the following stages:
-
The initial alphabet, \(\mathfrak{A} = \{ {}^{\backprime\backprime} a_1 {}^{\prime\prime}, \ldots, {}^{\backprime\backprime} a_n {}^{\prime\prime} \},\!\) is extended by a first order differential alphabet, \(\mathrm{d}\mathfrak{A} = \{ {}^{\backprime\backprime} \mathrm{d}a_1 {}^{\prime\prime}, \ldots, {}^{\backprime\backprime} \mathrm{d}a_n {}^{\prime\prime} \},\!\) resulting in a first order extended alphabet, \(\mathrm{E}\mathfrak{A},\) defined as follows:
\(\mathrm{E}\mathfrak{A} ~=~ \mathfrak{A} ~\cup~ \mathrm{d}\mathfrak{A} ~=~ \{ {}^{\backprime\backprime} a_1 {}^{\prime\prime}, \ldots, {}^{\backprime\backprime} a_n {}^{\prime\prime}, {}^{\backprime\backprime} \mathrm{d}a_1 {}^{\prime\prime}, \ldots, {}^{\backprime\backprime} \mathrm{d}a_n {}^{\prime\prime} \}.\!\)
-
The initial basis, \(\mathcal{A} = \{ a_1, \ldots, a_n \},\!\) is extended by a first order differential basis, \(\mathrm{d}\mathcal{A} = \{ \mathrm{d}a_1, \ldots, \mathrm{d}a_n \},\!\) resulting in a first order extended basis, \(\mathrm{E}\mathcal{A},\!\) defined as follows:
\(\mathrm{E}\mathcal{A} ~=~ \mathcal{A} ~\cup~ \mathrm{d}\mathcal{A} ~=~ \{ a_1, \ldots, a_n, \mathrm{d}a_1, \ldots, \mathrm{d}a_n \}.\!\)
-
The initial space, \(A = \langle a_1, \ldots, a_n \rangle,\!\) is extended by a first order differential space or tangent space, \(\mathrm{d}A = \langle \mathrm{d}a_1, \ldots, \mathrm{d}a_n \rangle,\!\) at each point of \(A,\!\) resulting in a first order extended space or tangent bundle space, \(\mathrm{E}A,\!\) defined as follows:
\(\mathrm{E}A ~=~ A ~\times~ \mathrm{d}A ~=~ \langle \mathrm{E}\mathcal{A} \rangle ~=~ \langle \mathcal{A} \cup \mathrm{d}\mathcal{A} \rangle ~=~ \langle a_1, \ldots, a_n, \mathrm{d}a_1, \ldots, \mathrm{d}a_n \rangle.\!\)
-
Finally, the initial universe, \(A^\bullet = [ a_1, \ldots, a_n ],\!\) is extended by a first order differential universe or tangent universe, \(\mathrm{d}A^\bullet = [ \mathrm{d}a_1, \ldots, \mathrm{d}a_n ],\!\) at each point of \(A^\bullet,\!\) resulting in a first order extended universe or tangent bundle universe, \(\mathrm{E}A^\bullet,\!\) defined as follows:
\(\mathrm{E}A^\bullet ~=~ [ \mathrm{E}\mathcal{A} ] ~=~ [ \mathcal{A} ~\cup~ \mathrm{d}\mathcal{A} ] ~=~ [ a_1, \ldots, a_n, \mathrm{d}a_1, \ldots, \mathrm{d}a_n ].\!\)
This gives \(\mathrm{E}A^\bullet\!\) the type:
\([ \mathbb{B}^n \times \mathbb{D}^n ] ~=~ (\mathbb{B}^n \times \mathbb{D}^n\ +\!\!\to \mathbb{B}) ~=~ (\mathbb{B}^n \times \mathbb{D}^n, \mathbb{B}^n \times \mathbb{D}^n \to \mathbb{B}).\!\)
A proposition in a differential extension of a universe of discourse is called a differential proposition and forms the analogue of a system of differential equations in ordinary calculus. With these constructions, the first order extended universe \(\mathrm{E}A^\bullet\) and the first order differential proposition \(f : \mathrm{E}A \to \mathbb{B},\) we have arrived, in concept at least, at the foothills of differential logic.
Table 7 summarizes the notations that are needed to describe the first order differential extensions of propositional calculi in a systematic manner.
| \(\text{Symbol}\!\) | \(\text{Notation}\!\) | \(\text{Description}\!\) | \(\text{Type}\!\) |
| \(\mathrm{d}\mathfrak{A}\!\) | \(\{ {}^{\backprime\backprime} \mathrm{d}a_1 {}^{\prime\prime}, \ldots, {}^{\backprime\backprime} \mathrm{d}a_n {}^{\prime\prime} \}\!\) |
\(\begin{matrix} \text{Alphabet of} \\[2pt] \text{differential symbols} \end{matrix}\) |
\([n] = \mathbf{n}\!\) |
| \(\mathrm{d}\mathcal{A}\!\) | \(\{ \mathrm{d}a_1, \ldots, \mathrm{d}a_n \}\!\) |
\(\begin{matrix} \text{Basis of} \\[2pt] \text{differential features} \end{matrix}\) |
\([n] = \mathbf{n}\!\) |
| \(\mathrm{d}A_i\!\) | \(\{ \texttt{(} \mathrm{d}a_i \texttt{)}, \mathrm{d}a_i \}\!\) | \(\text{Differential dimension}~ i\!\) | \(\mathbb{D}\!\) |
| \(\mathrm{d}A\!\) |
\(\begin{matrix} \langle \mathrm{d}\mathcal{A} \rangle \\[2pt] \langle \mathrm{d}a_1, \ldots, \mathrm{d}a_n \rangle \\[2pt] \{ (\mathrm{d}a_1, \ldots, \mathrm{d}a_n) \} \\[2pt] \mathrm{d}A_1 \times \ldots \times \mathrm{d}A_n \\[2pt] \textstyle \prod_i \mathrm{d}A_i \end{matrix}\) |
\(\begin{matrix} \text{Tangent space at a point:} \\[2pt] \text{Set of changes, motions,} \\[2pt] \text{steps, tangent vectors} \\[2pt] \text{at a point} \end{matrix}\) |
\(\mathbb{D}^n\!\) |
| \(\mathrm{d}A^*\!\) | \((\mathrm{hom} : \mathrm{d}A \to \mathbb{B})\!\) | \(\text{Linear functions on}~ \mathrm{d}A\!\) | \((\mathbb{D}^n)^* \cong \mathbb{D}^n\!\) |
| \(\mathrm{d}A^\uparrow\!\) | \((\mathrm{d}A \to \mathbb{B})\!\) | \(\text{Boolean functions on}~ \mathrm{d}A\!\) | \(\mathbb{D}^n \to \mathbb{B}\!\) |
| \(\mathrm{d}A^\bullet\!\) |
\(\begin{matrix} [\mathrm{d}\mathcal{A}] \\[2pt] (\mathrm{d}A, \mathrm{d}A^\uparrow) \\[2pt] (\mathrm{d}A ~+\!\to \mathbb{B}) \\[2pt] (\mathrm{d}A, (\mathrm{d}A \to \mathbb{B})) \\[2pt] [\mathrm{d}a_1, \ldots, \mathrm{d}a_n] \end{matrix}\) |
\(\begin{matrix} \text{Tangent universe at a point of}~ A^\bullet, \\[2pt] \text{based on the tangent features} \\[2pt] \{ \mathrm{d}a_1, \ldots, \mathrm{d}a_n \} \end{matrix}\) |
\(\begin{matrix} (\mathbb{D}^n, (\mathbb{D}^n \to \mathbb{B})) \\[2pt] (\mathbb{D}^n ~+\!\to \mathbb{B}) \\[2pt] [\mathbb{D}^n] \end{matrix}\) |
…
Appendices
Appendix 1. Propositional Forms and Differential Expansions
Table A1. Propositional Forms on Two Variables
| \(\begin{matrix}\mathcal{L}_1\\\text{Decimal}\\\text{Index}\end{matrix}\) | \(\begin{matrix}\mathcal{L}_2\\\text{Binary}\\\text{Index}\end{matrix}\) | \(\begin{matrix}\mathcal{L}_3\\\text{Truth}\\\text{Table}\end{matrix}\) | \(\begin{matrix}\mathcal{L}_4\\\text{Cactus}\\\text{Language}\end{matrix}\) | \(\begin{matrix}\mathcal{L}_5\\\text{English}\\\text{Paraphrase}\end{matrix}\) | \(\begin{matrix}\mathcal{L}_6\\\text{Conventional}\\\text{Formula}\end{matrix}\) |
| \(x\colon\!\) | \(1~1~0~0\!\) | ||||
| \(y\colon\!\) | \(1~0~1~0\!\) | ||||
|
\(\begin{matrix} f_{0}\\f_{1}\\f_{2}\\f_{3}\\f_{4}\\f_{5}\\f_{6}\\f_{7} \end{matrix}\) |
\(\begin{matrix} f_{0000}\\f_{0001}\\f_{0010}\\f_{0011}\\f_{0100}\\f_{0101}\\f_{0110}\\f_{0111} \end{matrix}\) |
\(\begin{matrix} 0~0~0~0\\0~0~0~1\\0~0~1~0\\0~0~1~1\\0~1~0~0\\0~1~0~1\\0~1~1~0\\0~1~1~1 \end{matrix}\!\) |
\(\begin{matrix} \texttt{(~)} \\ \texttt{(} x \texttt{)(} y \texttt{)} \\ \texttt{(} x \texttt{)~} y \texttt{~} \\ \texttt{(} x \texttt{)~ ~} \\ \texttt{~} x \texttt{~(} y \texttt{)} \\ \texttt{~ ~(} y \texttt{)} \\ \texttt{(} x \texttt{,~} y \texttt{)} \\ \texttt{(} x \texttt{~~} y \texttt{)} \end{matrix}\) |
\(\begin{matrix} \text{false} \\ \text{neither}~ x ~\text{nor}~ y \\ y ~\text{without}~ x \\ \text{not}~ x \\ x ~\text{without}~ y \\ \text{not}~ y \\ x ~\text{not equal to}~ y \\ \text{not both}~ x ~\text{and}~ y \end{matrix}\) |
\(\begin{matrix} 0 \\ \lnot x \land \lnot y \\ \lnot x \land y \\ \lnot x \\ x \land \lnot y \\ \lnot y \\ x \ne y \\ \lnot x \lor \lnot y \end{matrix}\) |
|
\(\begin{matrix} f_{8}\\f_{9}\\f_{10}\\f_{11}\\f_{12}\\f_{13}\\f_{14}\\f_{15} \end{matrix}\) |
\(\begin{matrix} f_{1000}\\f_{1001}\\f_{1010}\\f_{1011}\\f_{1100}\\f_{1101}\\f_{1110}\\f_{1111} \end{matrix}\!\) |
\(\begin{matrix} 1~0~0~0\\1~0~0~1\\1~0~1~0\\1~0~1~1\\1~1~0~0\\1~1~0~1\\1~1~1~0\\1~1~1~1 \end{matrix}\) |
\(\begin{matrix} \texttt{~~} x \texttt{~~} y \texttt{~~} \\ \texttt{((} x \texttt{,~} y \texttt{))} \\ \texttt{~ ~ ~} y \texttt{~~} \\ \texttt{~(} x \texttt{~(} y \texttt{))} \\ \texttt{~~} x \texttt{~ ~ ~} \\ \texttt{((} x \texttt{)~} y \texttt{)~} \\ \texttt{((} x \texttt{)(} y \texttt{))} \\ \texttt{((~))} \end{matrix}\) |
\(\begin{matrix} x ~\text{and}~ y \\ x ~\text{equal to}~ y \\ y \\ \text{not}~ x ~\text{without}~ y \\ x \\ \text{not}~ y ~\text{without}~ x \\ x ~\text{or}~ y \\ \text{true} \end{matrix}\) |
\(\begin{matrix} x \land y \\ x = y \\ y \\ x \Rightarrow y \\ x \\ x \Leftarrow y \\ x \lor y \\ 1 \end{matrix}\) |
Table A2. Propositional Forms on Two Variables
| \(\begin{matrix}\mathcal{L}_1\\\text{Decimal}\\\text{Index}\end{matrix}\) | \(\begin{matrix}\mathcal{L}_2\\\text{Binary}\\\text{Index}\end{matrix}\) | \(\begin{matrix}\mathcal{L}_3\\\text{Truth}\\\text{Table}\end{matrix}\) | \(\begin{matrix}\mathcal{L}_4\\\text{Cactus}\\\text{Language}\end{matrix}\) | \(\begin{matrix}\mathcal{L}_5\\\text{English}\\\text{Paraphrase}\end{matrix}\) | \(\begin{matrix}\mathcal{L}_6\\\text{Conventional}\\\text{Formula}\end{matrix}\) |
| \(x\colon\!\) | \(1~1~0~0\!\) | ||||
| \(y\colon\!\) | \(1~0~1~0\!\) | ||||
| \(f_{0}\!\) | \(f_{0000}\!\) | \(0~0~0~0\) | \(\texttt{(~)}\!\) | \(\text{false}\!\) | \(0\!\) |
|
\(\begin{matrix} f_{1}\\f_{2}\\f_{4}\\f_{8} \end{matrix}\) |
\(\begin{matrix} f_{0001}\\f_{0010}\\f_{0100}\\f_{1000} \end{matrix}\) |
\(\begin{matrix} 0~0~0~1\\0~0~1~0\\0~1~0~0\\1~0~0~0 \end{matrix}\) |
\(\begin{matrix} \texttt{(} x \texttt{)(} y \texttt{)} \\ \texttt{(} x \texttt{)~} y \texttt{~} \\ \texttt{~} x \texttt{~(} y \texttt{)} \\ \texttt{~} x \texttt{~~} y \texttt{~} \end{matrix}\) |
\(\begin{matrix} \text{neither}~ x ~\text{nor}~ y \\ y ~\text{without}~ x \\ x ~\text{without}~ y \\ x ~\text{and}~ y \end{matrix}\) |
\(\begin{matrix} \lnot x \land \lnot y \\ \lnot x \land y \\ x \land \lnot y \\ x \land y \end{matrix}\) |
|
\(\begin{matrix} f_{3}\\f_{12} \end{matrix}\) |
\(\begin{matrix} f_{0011}\\f_{1100} \end{matrix}\) |
\(\begin{matrix} 0~0~1~1\\1~1~0~0 \end{matrix}\) |
\(\begin{matrix} \texttt{(} x \texttt{)} \\ \texttt{~} x \texttt{~} \end{matrix}\) |
\(\begin{matrix} \text{not}~ x \\ x \end{matrix}\!\) |
\(\begin{matrix} \lnot x \\ x \end{matrix}\) |
|
\(\begin{matrix} f_{6}\\f_{9} \end{matrix}\) |
\(\begin{matrix} f_{0110}\\f_{1001} \end{matrix}\!\) |
\(\begin{matrix} 0~1~1~0\\1~0~0~1 \end{matrix}\) |
\(\begin{matrix} \texttt{~(} x \texttt{,~} y \texttt{)~} \\ \texttt{((} x \texttt{,~} y \texttt{))} \end{matrix}\) |
\(\begin{matrix} x ~\text{not equal to}~ y \\ x ~\text{equal to}~ y \end{matrix}\) |
\(\begin{matrix} x \ne y \\ x = y \end{matrix}\) |
|
\(\begin{matrix} f_{5}\\f_{10} \end{matrix}\) |
\(\begin{matrix} f_{0101}\\f_{1010} \end{matrix}\) |
\(\begin{matrix} 0~1~0~1\\1~0~1~0 \end{matrix}\) |
\(\begin{matrix} \texttt{(} y \texttt{)} \\ \texttt{~} y \texttt{~} \end{matrix}\) |
\(\begin{matrix} \text{not}~ y \\ y \end{matrix}\) |
\(\begin{matrix} \lnot y \\ y \end{matrix}\) |
|
\(\begin{matrix} f_{7}\\f_{11}\\f_{13}\\f_{14} \end{matrix}\) |
\(\begin{matrix} f_{0111}\\f_{1011}\\f_{1101}\\f_{1110} \end{matrix}\) |
\(\begin{matrix} 0~1~1~1\\1~0~1~1\\1~1~0~1\\1~1~1~0 \end{matrix}\) |
\(\begin{matrix} \texttt{~(} x \texttt{~~} y \texttt{)~} \\ \texttt{~(} x \texttt{~(} y \texttt{))} \\ \texttt{((} x \texttt{)~} y \texttt{)~} \\ \texttt{((} x \texttt{)(} y \texttt{))} \end{matrix}\) |
\(\begin{matrix} \text{not both}~ x ~\text{and}~ y \\ \text{not}~ x ~\text{without}~ y \\ \text{not}~ y ~\text{without}~ x \\ x ~\text{or}~ y \end{matrix}\) |
\(\begin{matrix} \lnot x \lor \lnot y \\ x \Rightarrow y \\ x \Leftarrow y \\ x \lor y \end{matrix}\) |
| \(f_{15}\!\) | \(f_{1111}\!\) | \(1~1~1~1\!\) | \(\texttt{((~))}\!\) | \(\text{true}\!\) | \(1\!\) |
Table A3. Ef Expanded Over Differential Features
| \(f\!\) |
\(\begin{matrix}\mathrm{T}_{11}f\\\mathrm{E}f|_{\mathrm{d}x ~ \mathrm{d}y}\end{matrix}\) |
\(\begin{matrix}\mathrm{T}_{10}f\\\mathrm{E}f|_{\mathrm{d}x \texttt{(} \mathrm{d}y \texttt{)}}\end{matrix}\) |
\(\begin{matrix}\mathrm{T}_{01}f\\\mathrm{E}f|_{\texttt{(} \mathrm{d}x \texttt{)} \mathrm{d}y}\end{matrix}\) |
\(\begin{matrix}\mathrm{T}_{00}f\\\mathrm{E}f|_{\texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)}}\end{matrix}\) | |
| \(f_{0}\!\) | \(0\!\) | \(0\!\) | \(0\!\) | \(0\!\) | \(0\!\) |
|
\(\begin{matrix} f_{1}\\f_{2}\\f_{4}\\f_{8} \end{matrix}\) |
\(\begin{matrix} \texttt{(} x \texttt{)(} y \texttt{)} \\ \texttt{(} x \texttt{)~} y \texttt{~} \\ \texttt{~} x \texttt{~(} y \texttt{)} \\ \texttt{~} x \texttt{~~} y \texttt{~} \end{matrix}\) |
\(\begin{matrix} \texttt{~} x \texttt{~~} y \texttt{~} \\ \texttt{~} x \texttt{~(} y \texttt{)} \\ \texttt{(} x \texttt{)~} y \texttt{~} \\ \texttt{(} x \texttt{)(} y \texttt{)} \end{matrix}\) |
\(\begin{matrix} \texttt{~} x \texttt{~(} y \texttt{)} \\ \texttt{~} x \texttt{~~} y \texttt{~} \\ \texttt{(} x \texttt{)(} y \texttt{)} \\ \texttt{(} x \texttt{)~} y \texttt{~} \end{matrix}\!\) |
\(\begin{matrix} \texttt{(} x \texttt{)~} y \texttt{~} \\ \texttt{(} x \texttt{)(} y \texttt{)} \\ \texttt{~} x \texttt{~~} y \texttt{~} \\ \texttt{~} x \texttt{~(} y \texttt{)} \end{matrix}\) |
\(\begin{matrix} \texttt{(} x \texttt{)(} y \texttt{)} \\ \texttt{(} x \texttt{)~} y \texttt{~} \\ \texttt{~} x \texttt{~(} y \texttt{)} \\ \texttt{~} x \texttt{~~} y \texttt{~} \end{matrix}\) |
|
\(\begin{matrix} f_{3}\\f_{12} \end{matrix}\) |
\(\begin{matrix} \texttt{(} x \texttt{)} \\ \texttt{~} x \texttt{~} \end{matrix}\) |
\(\begin{matrix} \texttt{~} x \texttt{~} \\ \texttt{(} x \texttt{)} \end{matrix}\) |
\(\begin{matrix} \texttt{~} x \texttt{~} \\ \texttt{(} x \texttt{)} \end{matrix}\) |
\(\begin{matrix} \texttt{(} x \texttt{)} \\ \texttt{~} x \texttt{~} \end{matrix}\) |
\(\begin{matrix} \texttt{(} x \texttt{)} \\ \texttt{~} x \texttt{~} \end{matrix}\) |
|
\(\begin{matrix} f_{6}\\f_{9} \end{matrix}\) |
\(\begin{matrix} \texttt{~(} x \texttt{,~} y \texttt{)~} \\ \texttt{((} x \texttt{,~} y \texttt{))} \end{matrix}\) |
\(\begin{matrix} \texttt{~(} x \texttt{,~} y \texttt{)~} \\ \texttt{((} x \texttt{,~} y \texttt{))} \end{matrix}\) |
\(\begin{matrix} \texttt{((} x \texttt{,~} y \texttt{))} \\ \texttt{~(} x \texttt{,~} y \texttt{)~} \end{matrix}\) |
\(\begin{matrix} \texttt{((} x \texttt{,~} y \texttt{))} \\ \texttt{~(} x \texttt{,~} y \texttt{)~} \end{matrix}\) |
\(\begin{matrix} \texttt{~(} x \texttt{,~} y \texttt{)~} \\ \texttt{((} x \texttt{,~} y \texttt{))} \end{matrix}\) |
|
\(\begin{matrix} f_{5}\\f_{10} \end{matrix}\) |
\(\begin{matrix} \texttt{(} y \texttt{)} \\ \texttt{~} y \texttt{~} \end{matrix}\) |
\(\begin{matrix} \texttt{~} y \texttt{~} \\ \texttt{(} y \texttt{)} \end{matrix}\) |
\(\begin{matrix} \texttt{(} y \texttt{)} \\ \texttt{~} y \texttt{~} \end{matrix}\) |
\(\begin{matrix} \texttt{~} y \texttt{~} \\ \texttt{(} y \texttt{)} \end{matrix}\) |
\(\begin{matrix} \texttt{(} y \texttt{)} \\ \texttt{~} y \texttt{~} \end{matrix}\) |
|
\(\begin{matrix} f_{7}\\f_{11}\\f_{13}\\f_{14} \end{matrix}\) |
\(\begin{matrix} \texttt{(~} x \texttt{~~} y \texttt{~)} \\ \texttt{(~} x \texttt{~(} y \texttt{))} \\ \texttt{((} x \texttt{)~} y \texttt{~)} \\ \texttt{((} x \texttt{)(} y \texttt{))} \end{matrix}\) |
\(\begin{matrix} \texttt{((} x \texttt{)(} y \texttt{))} \\ \texttt{((} x \texttt{)~} y \texttt{~)} \\ \texttt{(~} x \texttt{~(} y \texttt{))} \\ \texttt{(~} x \texttt{~~} y \texttt{~)} \end{matrix}\) |
\(\begin{matrix} \texttt{((} x \texttt{)~} y \texttt{~)} \\ \texttt{((} x \texttt{)(} y \texttt{))} \\ \texttt{(~} x \texttt{~~} y \texttt{~)} \\ \texttt{(~} x \texttt{~(} y \texttt{))} \end{matrix}\) |
\(\begin{matrix} \texttt{(~} x \texttt{~(} y \texttt{))} \\ \texttt{(~} x \texttt{~~} y \texttt{~)} \\ \texttt{((} x \texttt{)(} y \texttt{))} \\ \texttt{((} x \texttt{)~} y \texttt{~)} \end{matrix}\!\) |
\(\begin{matrix} \texttt{(~} x \texttt{~~} y \texttt{~)} \\ \texttt{(~} x \texttt{~(} y \texttt{))} \\ \texttt{((} x \texttt{)~} y \texttt{~)} \\ \texttt{((} x \texttt{)(} y \texttt{))} \end{matrix}\) |
| \(f_{15}\!\) | \(1\!\) | \(1\!\) | \(1\!\) | \(1\!\) | \(1\!\) |
| \(\text{Fixed Point Total}\!\) | \(4\!\) | \(4\!\) | \(4\!\) | \(16\!\) | |
Table A4. Df Expanded Over Differential Features
| \(f\!\) |
\(\mathrm{D}f|_{\mathrm{d}x ~ \mathrm{d}y}\!\) |
\(\mathrm{D}f|_{\mathrm{d}x \texttt{(} \mathrm{d}y \texttt{)}}\!\) |
\(\mathrm{D}f|_{\texttt{(} \mathrm{d}x \texttt{)} \mathrm{d}y}~\!\) |
\(\mathrm{D}f|_{\texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)}}\!\) | |
| \(f_{0}\!\) | \(0\!\) | \(0\!\) | \(0\!\) | \(0\!\) | \(0\!\) |
|
\(\begin{matrix} f_{1}\\f_{2}\\f_{4}\\f_{8} \end{matrix}\) |
\(\begin{matrix} \texttt{(} x \texttt{)(} y \texttt{)} \\ \texttt{(} x \texttt{)~} y \texttt{~} \\ \texttt{~} x \texttt{~(} y \texttt{)} \\ \texttt{~} x \texttt{~~} y \texttt{~} \end{matrix}\) |
\(\begin{matrix} \texttt{((} x \texttt{,~} y \texttt{))} \\ \texttt{~(} x \texttt{,~} y \texttt{)~} \\ \texttt{~(} x \texttt{,~} y \texttt{)~} \\ \texttt{((} x \texttt{,~} y \texttt{))} \end{matrix}\) |
\(\begin{matrix} \texttt{(} y \texttt{)} \\ y \\ \texttt{(} y \texttt{)} \\ y \end{matrix}\!\) |
\(\begin{matrix} \texttt{(} x \texttt{)} \\ \texttt{(} x \texttt{)} \\ x \\ x \end{matrix}\) |
\(\begin{matrix}0\\0\\0\\0\end{matrix}\) |
|
\(\begin{matrix}f_{3}\\f_{12}\end{matrix}\) |
\(\begin{matrix} \texttt{(} x \texttt{)} \\ x \end{matrix}\) |
\(\begin{matrix}1\\1\end{matrix}\) |
\(\begin{matrix}1\\1\end{matrix}\) |
\(\begin{matrix}0\\0\end{matrix}\) |
\(\begin{matrix}0\\0\end{matrix}\) |
|
\(\begin{matrix}f_{6}\\f_{9}\end{matrix}\) |
\(\begin{matrix} \texttt{~(} x \texttt{,~} y \texttt{)~} \\ \texttt{((} x \texttt{,~} y \texttt{))} \end{matrix}\) |
\(\begin{matrix}0\\0\end{matrix}\) |
\(\begin{matrix}1\\1\end{matrix}\) |
\(\begin{matrix}1\\1\end{matrix}\) |
\(\begin{matrix}0\\0\end{matrix}\) |
|
\(\begin{matrix}f_{5}\\f_{10}\end{matrix}\) |
\(\begin{matrix} \texttt{(} y \texttt{)} \\ \texttt{~} y \texttt{~} \end{matrix}\) |
\(\begin{matrix}1\\1\end{matrix}\) |
\(\begin{matrix}0\\0\end{matrix}\) |
\(\begin{matrix}1\\1\end{matrix}\) |
\(\begin{matrix}0\\0\end{matrix}\) |
|
\(\begin{matrix}f_{7}\\f_{11}\\f_{13}\\f_{14}\end{matrix}\) |
\(\begin{matrix} \texttt{(~} x \texttt{~~} y \texttt{~)} \\ \texttt{(~} x \texttt{~(} y \texttt{))} \\ \texttt{((} x \texttt{)~} y \texttt{~)} \\ \texttt{((} x \texttt{)(} y \texttt{))} \end{matrix}\) |
\(\begin{matrix} \texttt{((} x \texttt{,~} y \texttt{))} \\ \texttt{~(} x \texttt{,~} y \texttt{)~} \\ \texttt{~(} x \texttt{,~} y \texttt{)~} \\ \texttt{((} x \texttt{,~} y \texttt{))} \end{matrix}\) |
\(\begin{matrix} y \\ \texttt{(} y \texttt{)} \\ y \\ \texttt{(} y \texttt{)} \end{matrix}\) |
\(\begin{matrix} x \\ x \\ \texttt{(} x \texttt{)} \\ \texttt{(} x \texttt{)} \end{matrix}\) |
\(\begin{matrix}0\\0\\0\\0\end{matrix}\) |
| \(f_{15}\!\) | \(1\!\) | \(0\!\) | \(0\!\) | \(0\!\) | \(0\!\) |
Table A5. Ef Expanded Over Ordinary Features
| \(f\!\) |
\(\mathrm{E}f|_{xy}\!\) |
\(\mathrm{E}f|_{x \texttt{(} y \texttt{)}}\!\) |
\(\mathrm{E}f|_{\texttt{(} x \texttt{)} y}\!\) |
\(\mathrm{E}f|_{\texttt{(} x \texttt{)(} y \texttt{)}}\!\) | |
| \(f_{0}\!\) | \(0\!\) | \(0\!\) | \(0\!\) | \(0\!\) | \(0\!\) |
|
\(\begin{matrix} f_{1}\\f_{2}\\f_{4}\\f_{8} \end{matrix}\) |
\(\begin{matrix} \texttt{(} x \texttt{)(} y \texttt{)} \\ \texttt{(} x \texttt{)~} y \texttt{~} \\ \texttt{~} x \texttt{~(} y \texttt{)} \\ \texttt{~} x \texttt{~~} y \texttt{~} \end{matrix}\) |
\(\begin{matrix} \texttt{~} \mathrm{d}x \texttt{~~} \mathrm{d}y \texttt{~} \\ \texttt{~} \mathrm{d}x \texttt{~(} \mathrm{d}y \texttt{)} \\ \texttt{(} \mathrm{d}x \texttt{)~} \mathrm{d}y \texttt{~} \\ \texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)} \end{matrix}\) |
\(\begin{matrix} \texttt{~} \mathrm{d}x \texttt{~(} \mathrm{d}y \texttt{)} \\ \texttt{~} \mathrm{d}x \texttt{~~} \mathrm{d}y \texttt{~} \\ \texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)} \\ \texttt{(} \mathrm{d}x \texttt{)~} \mathrm{d}y \texttt{~} \end{matrix}\!\) |
\(\begin{matrix} \texttt{(} \mathrm{d}x \texttt{)~} \mathrm{d}y \texttt{~} \\ \texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)} \\ \texttt{~} \mathrm{d}x \texttt{~~} \mathrm{d}y \texttt{~} \\ \texttt{~} \mathrm{d}x \texttt{~(} \mathrm{d}y \texttt{)} \end{matrix}\) |
\(\begin{matrix} \texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)} \\ \texttt{(} \mathrm{d}x \texttt{)~} \mathrm{d}y \texttt{~} \\ \texttt{~} \mathrm{d}x \texttt{~(} \mathrm{d}y \texttt{)} \\ \texttt{~} \mathrm{d}x \texttt{~~} \mathrm{d}y \texttt{~} \end{matrix}\) |
|
\(\begin{matrix} f_{3}\\f_{12} \end{matrix}\) |
\(\begin{matrix} \texttt{(} x \texttt{)} \\ \texttt{~} x \texttt{~} \end{matrix}\) |
\(\begin{matrix} \texttt{~} \mathrm{d}x \texttt{~} \\ \texttt{(} \mathrm{d}x \texttt{)} \end{matrix}\) |
\(\begin{matrix} \texttt{~} \mathrm{d}x \texttt{~} \\ \texttt{(} \mathrm{d}x \texttt{)} \end{matrix}\) |
\(\begin{matrix} \texttt{(} \mathrm{d}x \texttt{)} \\ \texttt{~} \mathrm{d}x \texttt{~} \end{matrix}\) |
\(\begin{matrix} \texttt{(} \mathrm{d}x \texttt{)} \\ \texttt{~} \mathrm{d}x \texttt{~} \end{matrix}\) |
|
\(\begin{matrix} f_{6}\\f_{9} \end{matrix}\) |
\(\begin{matrix} \texttt{~(} x \texttt{,~} y \texttt{)~} \\ \texttt{((} x \texttt{,~} y \texttt{))} \end{matrix}\) |
\(\begin{matrix} \texttt{~(} \mathrm{d}x \texttt{,~} \mathrm{d}y \texttt{)~} \\ \texttt{((} \mathrm{d}x \texttt{,~} \mathrm{d}y \texttt{))} \end{matrix}\) |
\(\begin{matrix} \texttt{((} \mathrm{d}x \texttt{,~} \mathrm{d}y \texttt{))} \\ \texttt{~(} \mathrm{d}x \texttt{,~} \mathrm{d}y \texttt{)~} \end{matrix}\) |
\(\begin{matrix} \texttt{((} \mathrm{d}x \texttt{,~} \mathrm{d}y \texttt{))} \\ \texttt{~(} \mathrm{d}x \texttt{,~} \mathrm{d}y \texttt{)~} \end{matrix}\) |
\(\begin{matrix} \texttt{~(} \mathrm{d}x \texttt{,~} \mathrm{d}y \texttt{)~} \\ \texttt{((} \mathrm{d}x \texttt{,~} \mathrm{d}y \texttt{))} \end{matrix}\) |
|
\(\begin{matrix} f_{5}\\f_{10} \end{matrix}\) |
\(\begin{matrix} \texttt{(} y \texttt{)} \\ \texttt{~} y \texttt{~} \end{matrix}\) |
\(\begin{matrix} \texttt{~} \mathrm{d}y \texttt{~} \\ \texttt{(} \mathrm{d}y \texttt{)} \end{matrix}\) |
\(\begin{matrix} \texttt{(} \mathrm{d}y \texttt{)} \\ \texttt{~} \mathrm{d}y \texttt{~} \end{matrix}\) |
\(\begin{matrix} \texttt{~} \mathrm{d}y \texttt{~} \\ \texttt{(} \mathrm{d}y \texttt{)} \end{matrix}\) |
\(\begin{matrix} \texttt{(} \mathrm{d}y \texttt{)} \\ \texttt{~} \mathrm{d}y \texttt{~} \end{matrix}\) |
|
\(\begin{matrix} f_{7}\\f_{11}\\f_{13}\\f_{14} \end{matrix}\) |
\(\begin{matrix} \texttt{(~} x \texttt{~~} y \texttt{~)} \\ \texttt{(~} x \texttt{~(} y \texttt{))} \\ \texttt{((} x \texttt{)~} y \texttt{~)} \\ \texttt{((} x \texttt{)(} y \texttt{))} \end{matrix}\) |
\(\begin{matrix} \texttt{((} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{))} \\ \texttt{((} \mathrm{d}x \texttt{)~} \mathrm{d}y \texttt{~)} \\ \texttt{(~} \mathrm{d}x \texttt{~(} \mathrm{d}y \texttt{))} \\ \texttt{(~} \mathrm{d}x \texttt{~~} \mathrm{d}y \texttt{~)} \end{matrix}\) |
\(\begin{matrix} \texttt{((} \mathrm{d}x \texttt{)~} \mathrm{d}y \texttt{~)} \\ \texttt{((} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{))} \\ \texttt{(~} \mathrm{d}x \texttt{~~} \mathrm{d}y \texttt{~)} \\ \texttt{(~} \mathrm{d}x \texttt{~(} \mathrm{d}y \texttt{))} \end{matrix}\) |
\(\begin{matrix} \texttt{(~} \mathrm{d}x \texttt{~(} \mathrm{d}y \texttt{))} \\ \texttt{(~} \mathrm{d}x \texttt{~~} \mathrm{d}y \texttt{~)} \\ \texttt{((} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{))} \\ \texttt{((} \mathrm{d}x \texttt{)~} \mathrm{d}y \texttt{~)} \end{matrix}\!\) |
\(\begin{matrix} \texttt{(~} \mathrm{d}x \texttt{~~} \mathrm{d}y \texttt{~)} \\ \texttt{(~} \mathrm{d}x \texttt{~(} \mathrm{d}y \texttt{))} \\ \texttt{((} \mathrm{d}x \texttt{)~} \mathrm{d}y \texttt{~)} \\ \texttt{((} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{))} \end{matrix}\) |
| \(f_{15}\!\) | \(1\!\) | \(1\!\) | \(1\!\) | \(1\!\) | \(1\!\) |
Table A6. Df Expanded Over Ordinary Features
| \(f\!\) |
\(\mathrm{D}f|_{xy}\!\) |
\(\mathrm{D}f|_{x \texttt{(} y \texttt{)}}\!\) |
\(\mathrm{D}f|_{\texttt{(} x \texttt{)} y}\!\) |
\(\mathrm{D}f|_{\texttt{(} x \texttt{)(} y \texttt{)}}\!\) | |
| \(f_{0}\!\) | \(0\!\) | \(0\!\) | \(0\!\) | \(0\!\) | \(0\!\) |
| \(\begin{matrix}f_{1}\\f_{2}\\f_{4}\\f_{8}\end{matrix}\) |
\(\begin{matrix} \texttt{(} x \texttt{)(} y \texttt{)} \\ \texttt{(} x \texttt{)~} y \texttt{~} \\ \texttt{~} x \texttt{~(} y \texttt{)} \\ \texttt{~} x \texttt{~~} y \texttt{~} \end{matrix}\) |
\(\begin{matrix} \texttt{~} \mathrm{d}x \texttt{~~} \mathrm{d}y \texttt{~} \\ \texttt{~} \mathrm{d}x \texttt{~(} \mathrm{d}y \texttt{)} \\ \texttt{(} \mathrm{d}x \texttt{)~} \mathrm{d}y \texttt{~} \\ \texttt{((} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{))} \end{matrix}\) |
\(\begin{matrix} \texttt{~} \mathrm{d}x \texttt{~(} \mathrm{d}y \texttt{)} \\ \texttt{~} \mathrm{d}x \texttt{~~} \mathrm{d}y \texttt{~} \\ \texttt{((} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{))} \\ \texttt{(} \mathrm{d}x \texttt{)~} \mathrm{d}y \texttt{~} \end{matrix}\!\) |
\(\begin{matrix} \texttt{(} \mathrm{d}x \texttt{)~} \mathrm{d}y \texttt{~} \\ \texttt{((} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{))} \\ \texttt{~} \mathrm{d}x \texttt{~~} \mathrm{d}y \texttt{~} \\ \texttt{~} \mathrm{d}x \texttt{~(} \mathrm{d}y \texttt{)} \end{matrix}\) |
\(\begin{matrix} \texttt{((} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{))} \\ \texttt{(} \mathrm{d}x \texttt{)~} \mathrm{d}y \texttt{~} \\ \texttt{~} \mathrm{d}x \texttt{~(} \mathrm{d}y \texttt{)} \\ \texttt{~} \mathrm{d}x \texttt{~~} \mathrm{d}y \texttt{~} \end{matrix}\) |
| \(\begin{matrix}f_{3}\\f_{12}\end{matrix}\) |
\(\begin{matrix}\texttt{(} x \texttt{)}\\\texttt{~} x \texttt{~}\end{matrix}\) |
\(\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}\) |
\(\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}\) |
\(\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}\) |
\(\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}\) |
| \(\begin{matrix}f_{6}\\f_{9}\end{matrix}\) |
\(\begin{matrix} \texttt{~(} x \texttt{,~} y \texttt{)~} \\ \texttt{((} x \texttt{,~} y \texttt{))} \end{matrix}\) |
\(\begin{matrix} \texttt{(} \mathrm{d}x \texttt{,~} \mathrm{d}y \texttt{)} \\ \texttt{(} \mathrm{d}x \texttt{,~} \mathrm{d}y \texttt{)} \end{matrix}\) |
\(\begin{matrix} \texttt{(} \mathrm{d}x \texttt{,~} \mathrm{d}y \texttt{)} \\ \texttt{(} \mathrm{d}x \texttt{,~} \mathrm{d}y \texttt{)} \end{matrix}\) |
\(\begin{matrix} \texttt{(} \mathrm{d}x \texttt{,~} \mathrm{d}y \texttt{)} \\ \texttt{(} \mathrm{d}x \texttt{,~} \mathrm{d}y \texttt{)} \end{matrix}\) |
\(\begin{matrix} \texttt{(} \mathrm{d}x \texttt{,~} \mathrm{d}y \texttt{)} \\ \texttt{(} \mathrm{d}x \texttt{,~} \mathrm{d}y \texttt{)} \end{matrix}\) |
| \(\begin{matrix}f_{5}\\f_{10}\end{matrix}\) |
\(\begin{matrix} \texttt{(} y \texttt{)} \\ \texttt{~} y \texttt{~} \end{matrix}\) |
\(\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}\) |
\(\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}\) |
\(\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}\) |
\(\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}\) |
| \(\begin{matrix}f_{7}\\f_{11}\\f_{13}\\f_{14}\end{matrix}\) |
\(\begin{matrix} \texttt{(~} x \texttt{~~} y \texttt{~)} \\ \texttt{(~} x \texttt{~(} y \texttt{))} \\ \texttt{((} x \texttt{)~} y \texttt{~)} \\ \texttt{((} x \texttt{)(} y \texttt{))} \end{matrix}\) |
\(\begin{matrix} \texttt{((} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{))} \\ \texttt{(} \mathrm{d}x \texttt{)~} \mathrm{d}y \texttt{~} \\ \texttt{~} \mathrm{d}x \texttt{~(} \mathrm{d}y \texttt{)} \\ \texttt{~} \mathrm{d}x \texttt{~~} \mathrm{d}y \texttt{~} \end{matrix}\) |
\(\begin{matrix} \texttt{(} \mathrm{d}x \texttt{)~} \mathrm{d}y \texttt{~} \\ \texttt{((} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{))} \\ \texttt{~} \mathrm{d}x \texttt{~~} \mathrm{d}y \texttt{~} \\ \texttt{~} \mathrm{d}x \texttt{~(} \mathrm{d}y \texttt{)} \end{matrix}\) |
\(\begin{matrix} \texttt{~} \mathrm{d}x \texttt{~(} \mathrm{d}y \texttt{)} \\ \texttt{~} \mathrm{d}x \texttt{~~} \mathrm{d}y \texttt{~} \\ \texttt{((} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{))} \\ \texttt{(} \mathrm{d}x \texttt{)~} \mathrm{d}y \texttt{~} \end{matrix}\!\) |
\(\begin{matrix} \texttt{~} \mathrm{d}x \texttt{~~} \mathrm{d}y \texttt{~} \\ \texttt{~} \mathrm{d}x \texttt{~(} \mathrm{d}y \texttt{)} \\ \texttt{(} \mathrm{d}x \texttt{)~} \mathrm{d}y \texttt{~} \\ \texttt{((} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{))} \end{matrix}\) |
| \(f_{15}\!\) | \(1\!\) | \(0\!\) | \(0\!\) | \(0\!\) | \(0\!\) |
Appendix 2. Differential Forms
The actions of the difference operator \(\mathrm{D}\!\) and the tangent operator \(\mathrm{d}\!\) on the 16 bivariate propositions are shown in Tables A7 and A8.
Table A7 expands the differential forms that result over a logical basis:
|
\(\{~ \texttt{(}\mathrm{d}x\texttt{)(}\mathrm{d}y\texttt{)}, ~\mathrm{d}x~\texttt{(}\mathrm{d}y\texttt{)}, ~\texttt{(}\mathrm{d}x\texttt{)}~\mathrm{d}y, ~\mathrm{d}x~\mathrm{d}y ~\}.\!\) |
This set consists of the singular propositions in the first order differential variables, indicating mutually exclusive and exhaustive cells of the tangent universe of discourse. Accordingly, this set of differential propositions may also be referred to as the cell-basis, point-basis, or singular differential basis. In this setting it is frequently convenient to use the following abbreviations:
|
\(\partial x ~=~ \mathrm{d}x~\texttt{(}\mathrm{d}y\texttt{)}\!\) and \(\partial y ~=~ \texttt{(}\mathrm{d}x\texttt{)}~\mathrm{d}y.\!\) |
Table A8 expands the differential forms that result over an algebraic basis:
| \(\{~ 1, ~\mathrm{d}x, ~\mathrm{d}y, ~\mathrm{d}x~\mathrm{d}y ~\}.\!\) |
This set consists of the positive propositions in the first order differential variables, indicating overlapping positive regions of the tangent universe of discourse. Accordingly, this set of differential propositions may also be referred to as the positive differential basis.
Table A7. Differential Forms Expanded on a Logical Basis
| \(f\!\) | \(\mathrm{D}f~\!\) | \(\mathrm{d}f~\!\) | |
| \(f_{0}\!\) | \(\texttt{(~)}\!\) | \(0\!\) | \(0\!\) |
| \(\begin{matrix}f_{1}\\f_{2}\\f_{4}\\f_{8}\end{matrix}\) |
\(\begin{matrix} \texttt{(} x \texttt{)(} y \texttt{)} \\ \texttt{(} x \texttt{)~} y \texttt{~} \\ \texttt{~} x \texttt{~(} y \texttt{)} \\ \texttt{~} x \texttt{~~} y \texttt{~} \end{matrix}\) |
\(\begin{matrix} \texttt{(} y \texttt{)} & \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} & + & \texttt{(} x \texttt{)} & \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y & + & \texttt{((} x \texttt{,~} y \texttt{))} & \mathrm{d}x ~ \mathrm{d}y \\ y & \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} & + & \texttt{(} x \texttt{)} & \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y & + & \texttt{(} x \texttt{,~} y \texttt{)} & \mathrm{d}x ~ \mathrm{d}y \\ \texttt{(} y \texttt{)} & \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} & + & x & \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y & + & \texttt{(} x \texttt{,~} y \texttt{)} & \mathrm{d}x ~ \mathrm{d}y \\ y & \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} & + & x & \texttt{(} \mathrm{d}x) ~ \mathrm{d}y & + & \texttt{((} x \texttt{,~} y \texttt{))} & \mathrm{d}x ~ \mathrm{d}y \end{matrix}\) |
\(\begin{matrix} \texttt{(} y \texttt{)} ~\partial x & + & \texttt{(} x \texttt{)} ~\partial y \\ \texttt{~} y \texttt{~} ~\partial x & + & \texttt{(} x \texttt{)} ~\partial y \\ \texttt{(} y \texttt{)} ~\partial x & + & \texttt{~} x \texttt{~} ~\partial y \\ \texttt{~} y \texttt{~} ~\partial x & + & \texttt{~} x \texttt{~} ~\partial y \end{matrix}\) |
| \(\begin{matrix}f_{3}\\f_{12}\end{matrix}\) |
\(\begin{matrix} \texttt{(} x \texttt{)} \\ \texttt{~} x \texttt{~} \end{matrix}\) |
\(\begin{matrix} \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} & + & \mathrm{d}x ~ \mathrm{d}y \\ \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} & + & \mathrm{d}x ~ \mathrm{d}y \end{matrix}\!\) |
\(\begin{matrix} \partial x \\ \partial x \end{matrix}\) |
| \(\begin{matrix}f_{6}\\f_{9}\end{matrix}\) |
\(\begin{matrix} \texttt{~(} x \texttt{,~} y \texttt{)~} \\ \texttt{((} x \texttt{,~} y \texttt{))} \end{matrix}\) |
\(\begin{matrix} \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} & + & \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y \\ \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} & + & \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y \end{matrix}\) |
\(\begin{matrix} \partial x & + & \partial y \\ \partial x & + & \partial y \end{matrix}\) |
| \(\begin{matrix}f_{5}\\f_{10}\end{matrix}\) |
\(\begin{matrix} \texttt{(} y \texttt{)} \\ \texttt{~} y \texttt{~} \end{matrix}\) |
\(\begin{matrix} \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y & + & \mathrm{d}x ~ \mathrm{d}y \\ \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y & + & \mathrm{d}x ~ \mathrm{d}y \end{matrix}\) |
\(\begin{matrix} \partial y \\ \partial y \end{matrix}\) |
| \(\begin{matrix}f_{7}\\f_{11}\\f_{13}\\f_{14}\end{matrix}\) |
\(\begin{matrix} \texttt{(~} x \texttt{~~} y \texttt{~)} \\ \texttt{(~} x \texttt{~(} y \texttt{))} \\ \texttt{((} x \texttt{)~} y \texttt{~)} \\ \texttt{((} x \texttt{)(} y \texttt{))} \end{matrix}\) |
\(\begin{matrix} y & \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} & + & x & \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y & + & \texttt{((} x \texttt{,~} y \texttt{))} & \mathrm{d}x ~ \mathrm{d}y \\ \texttt{(} y \texttt{)} & \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} & + & x & \texttt{(} \mathrm{d}x) ~ \mathrm{d}y & + & \texttt{(} x \texttt{,~} y \texttt{)} & \mathrm{d}x ~ \mathrm{d}y \\ y & \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} & + & \texttt{(} x \texttt{)} & \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y & + & \texttt{(} x \texttt{,~} y \texttt{)} & \mathrm{d}x ~ \mathrm{d}y \\ \texttt{(} y \texttt{)} & \mathrm{d}x ~ \texttt{(} \mathrm{d}y \texttt{)} & + & \texttt{(} x \texttt{)} & \texttt{(} \mathrm{d}x \texttt{)} ~ \mathrm{d}y & + & \texttt{((} x \texttt{,~} y \texttt{))} & \mathrm{d}x ~ \mathrm{d}y \end{matrix}\) |
\(\begin{matrix} \texttt{~} y \texttt{~} ~\partial x & + & \texttt{~} x \texttt{~} ~\partial y \\ \texttt{(} y \texttt{)} ~\partial x & + & \texttt{~} x \texttt{~} ~\partial y \\ \texttt{~} y \texttt{~} ~\partial x & + & \texttt{(} x \texttt{)} ~\partial y \\ \texttt{(} y \texttt{)} ~\partial x & + & \texttt{(} x \texttt{)} ~\partial y \end{matrix}\) |
| \(f_{15}\!\) | \(\texttt{((~))}\!\) | \(0\!\) | \(0\!\) |
Table A8. Differential Forms Expanded on an Algebraic Basis
| \(f\!\) | \(\mathrm{D}f~\!\) | \(\mathrm{d}f~\!\) | |
| \(f_{0}\!\) | \(\texttt{(~)}\!\) | \(0\!\) | \(0\!\) |
| \(\begin{matrix}f_{1}\\f_{2}\\f_{4}\\f_{8}\end{matrix}\) |
\(\begin{matrix} \texttt{(} x \texttt{)(} y \texttt{)} \\ \texttt{(} x \texttt{)~} y \texttt{~} \\ \texttt{~} x \texttt{~(} y \texttt{)} \\ \texttt{~} x \texttt{~~} y \texttt{~} \end{matrix}\) |
\(\begin{matrix} \texttt{(} y \texttt{)}~\mathrm{d}x & + & \texttt{(} x \texttt{)}~\mathrm{d}y & + & \mathrm{d}x~\mathrm{d}y \\ \texttt{~} y \texttt{~}~\mathrm{d}x & + & \texttt{(} x \texttt{)}~\mathrm{d}y & + & \mathrm{d}x~\mathrm{d}y \\ \texttt{(} y \texttt{)}~\mathrm{d}x & + & \texttt{~} x \texttt{~}~\mathrm{d}y & + & \mathrm{d}x~\mathrm{d}y \\ \texttt{~} y \texttt{~}~\mathrm{d}x & + & \texttt{~} x \texttt{~}~\mathrm{d}y & + & \mathrm{d}x~\mathrm{d}y \end{matrix}\) |
\(\begin{matrix} \texttt{(} y \texttt{)}~\mathrm{d}x & + & \texttt{(} x \texttt{)}~\mathrm{d}y \\ \texttt{~} y \texttt{~}~\mathrm{d}x & + & \texttt{(} x \texttt{)}~\mathrm{d}y \\ \texttt{(} y \texttt{)}~\mathrm{d}x & + & \texttt{~} x \texttt{~}~\mathrm{d}y \\ \texttt{~} y \texttt{~}~\mathrm{d}x & + & \texttt{~} x \texttt{~}~\mathrm{d}y \end{matrix}\) |
| \(\begin{matrix}f_{3}\\f_{12}\end{matrix}\) |
\(\begin{matrix} \texttt{(} x \texttt{)} \\ \texttt{~} x \texttt{~} \end{matrix}\) |
\(\begin{matrix} \mathrm{d}x \\ \mathrm{d}x \end{matrix}\!\) |
\(\begin{matrix} \mathrm{d}x \\ \mathrm{d}x \end{matrix}\) |
| \(\begin{matrix}f_{6}\\f_{9}\end{matrix}\) |
\(\begin{matrix} \texttt{~(} x \texttt{,~} y \texttt{)~} \\ \texttt{((} x \texttt{,~} y \texttt{))} \end{matrix}\) |
\(\begin{matrix} \mathrm{d}x & + & \mathrm{d}y \\ \mathrm{d}x & + & \mathrm{d}y \end{matrix}\) |
\(\begin{matrix} \mathrm{d}x & + & \mathrm{d}y \\ \mathrm{d}x & + & \mathrm{d}y \end{matrix}\) |
| \(\begin{matrix}f_{5}\\f_{10}\end{matrix}\) |
\(\begin{matrix} \texttt{(} y \texttt{)} \\ \texttt{~} y \texttt{~} \end{matrix}\) |
\(\begin{matrix} \mathrm{d}y \\ \mathrm{d}y \end{matrix}\) |
\(\begin{matrix} \mathrm{d}y \\ \mathrm{d}y \end{matrix}\) |
| \(\begin{matrix}f_{7}\\f_{11}\\f_{13}\\f_{14}\end{matrix}\) |
\(\begin{matrix} \texttt{(~} x \texttt{~~} y \texttt{~)} \\ \texttt{(~} x \texttt{~(} y \texttt{))} \\ \texttt{((} x \texttt{)~} y \texttt{~)} \\ \texttt{((} x \texttt{)(} y \texttt{))} \end{matrix}\) |
\(\begin{matrix} \texttt{~} y \texttt{~}~\mathrm{d}x & + & \texttt{~} x \texttt{~}~\mathrm{d}y & + & \mathrm{d}x~\mathrm{d}y \\ \texttt{(} y \texttt{)}~\mathrm{d}x & + & \texttt{~} x \texttt{~}~\mathrm{d}y & + & \mathrm{d}x~\mathrm{d}y \\ \texttt{~} y \texttt{~}~\mathrm{d}x & + & \texttt{(} x \texttt{)}~\mathrm{d}y & + & \mathrm{d}x~\mathrm{d}y \\ \texttt{(} y \texttt{)}~\mathrm{d}x & + & \texttt{(} x \texttt{)}~\mathrm{d}y & + & \mathrm{d}x~\mathrm{d}y \end{matrix}\) |
\(\begin{matrix} \texttt{~} y \texttt{~}~\mathrm{d}x & + & \texttt{~} x \texttt{~}~\mathrm{d}y \\ \texttt{(} y \texttt{)}~\mathrm{d}x & + & \texttt{~} x \texttt{~}~\mathrm{d}y \\ \texttt{~} y \texttt{~}~\mathrm{d}x & + & \texttt{(} x \texttt{)}~\mathrm{d}y \\ \texttt{(} y \texttt{)}~\mathrm{d}x & + & \texttt{(} x \texttt{)}~\mathrm{d}y \end{matrix}\) |
| \(f_{15}\!\) | \(\texttt{((~))}\!\) | \(0\!\) | \(0\!\) |
Table A9. Tangent Proposition as Pointwise Linear Approximation
| \(f\!\) |
\(\begin{matrix} \mathrm{d}f = \\[2pt] \partial_x f \cdot \mathrm{d}x ~+~ \partial_y f \cdot \mathrm{d}y \end{matrix}\) |
\(\begin{matrix} \mathrm{d}^2\!f = \\[2pt] \partial_{xy} f \cdot \mathrm{d}x\;\mathrm{d}y \end{matrix}\) |
\(\mathrm{d}f|_{x \, y}\) | \(\mathrm{d}f|_{x \, \texttt{(} y \texttt{)}}\) | \(\mathrm{d}f|_{\texttt{(} x \texttt{)} \, y}\) | \(\mathrm{d}f|_{\texttt{(} x \texttt{)(} y \texttt{)}}\) |
| \(f_0\!\) | \(0\!\) | \(0\!\) | \(0\!\) | \(0\!\) | \(0\!\) | \(0\!\) |
|
\(\begin{matrix}f_{1}\\f_{2}\\f_{4}\\f_{8}\end{matrix}\!\) |
\(\begin{matrix} \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y \\ \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y \\ \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y \\ \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y \end{matrix}\) |
\(\begin{matrix} \mathrm{d}x\;\mathrm{d}y \\ \mathrm{d}x\;\mathrm{d}y \\ \mathrm{d}x\;\mathrm{d}y \\ \mathrm{d}x\;\mathrm{d}y \end{matrix}\) |
\(\begin{matrix}0\\\mathrm{d}x\\\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\end{matrix}\) | \(\begin{matrix}\mathrm{d}x\\0\\\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\end{matrix}\) | \(\begin{matrix}\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\\0\\\mathrm{d}x\end{matrix}\) | \(\begin{matrix}\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\\\mathrm{d}x\\0\end{matrix}\) |
|
\(\begin{matrix}f_{3}\\f_{12}\end{matrix}\) |
\(\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}\) |
\(\begin{matrix}0\\0\end{matrix}\) | \(\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}\) | \(\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}\) | \(\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}\) | \(\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}\) |
|
\(\begin{matrix}f_{6}\\f_{9}\end{matrix}\) |
\(\begin{matrix}\mathrm{d}x & + & \mathrm{d}y\\\mathrm{d}x & + & \mathrm{d}y\end{matrix}\) |
\(\begin{matrix}0\\0\end{matrix}\) | \(\begin{matrix}\mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\end{matrix}\) | \(\begin{matrix}\mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\end{matrix}\) | \(\begin{matrix}\mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\end{matrix}\) | \(\begin{matrix}\mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\end{matrix}\) |
|
\(\begin{matrix}f_{5}\\f_{10}\end{matrix}\!\) |
\(\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}\!\) |
\(\begin{matrix}0\\0\end{matrix}\) | \(\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}\!\) | \(\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}\!\) | \(\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}\!\) | \(\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}\!\) |
|
\(\begin{matrix}f_{7}\\f_{11}\\f_{13}\\f_{14}\end{matrix}\) |
\(\begin{matrix} \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y \\ \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y \\ \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y \\ \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y \end{matrix}\!\) |
\(\begin{matrix} \mathrm{d}x\;\mathrm{d}y \\ \mathrm{d}x\;\mathrm{d}y \\ \mathrm{d}x\;\mathrm{d}y \\ \mathrm{d}x\;\mathrm{d}y \end{matrix}\) | \(\begin{matrix}\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\\\mathrm{d}x\\0\end{matrix}\) | \(\begin{matrix}\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\\0\\\mathrm{d}x\end{matrix}\) | \(\begin{matrix}\mathrm{d}x\\0\\\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\end{matrix}\) | \(\begin{matrix}0\\\mathrm{d}x\\\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\end{matrix}\) |
| \(f_{15}\!\) | \(0\!\) | \(0\!\) | \(0\!\) | \(0\!\) | \(0\!\) | \(0\!\) |
Table A10. Taylor Series Expansion Df = df + d2f
| \(f\!\) |
\(\begin{matrix} \mathrm{D}f \\ = & \mathrm{d}f & + & \mathrm{d}^2\!f \\ = & \partial_x f \cdot \mathrm{d}x ~+~ \partial_y f \cdot \mathrm{d}y & + & \partial_{xy} f \cdot \mathrm{d}x\;\mathrm{d}y \end{matrix}\) |
\(\mathrm{d}f|_{x \, y}\) | \(\mathrm{d}f|_{x \, \texttt{(} y \texttt{)}}\) | \(\mathrm{d}f|_{\texttt{(} x \texttt{)} \, y}\) | \(\mathrm{d}f|_{\texttt{(} x \texttt{)(} y \texttt{)}}\) |
| \(f_0\!\) | \(0\!\) | \(0\!\) | \(0\!\) | \(0\!\) | \(0\!\) |
| \(\begin{matrix}f_{1}\\f_{2}\\f_{4}\\f_{8}\end{matrix}\) |
\(\begin{matrix} \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y & + & \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y \\ \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y & + & \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y \\ \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y & + & \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y \\ \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y & + & \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y \end{matrix}\) |
\(\begin{matrix} 0\\\mathrm{d}x\\\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y \end{matrix}\) |
\(\begin{matrix} \mathrm{d}x\\0\\\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y \end{matrix}\) |
\(\begin{matrix} \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\\0\\\mathrm{d}x \end{matrix}\) |
\(\begin{matrix} \mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\\\mathrm{d}x\\0 \end{matrix}\) |
| \(\begin{matrix}f_{3}\\f_{12}\end{matrix}\) |
\(\begin{matrix} \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + & \texttt{~} 0 \texttt{~} \cdot \mathrm{d}y & + & \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y \\ \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + & \texttt{~} 0 \texttt{~} \cdot \mathrm{d}y & + & \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y \end{matrix}\) |
\(\begin{matrix} \mathrm{d}x\\\mathrm{d}x \end{matrix}\) |
\(\begin{matrix} \mathrm{d}x\\\mathrm{d}x \end{matrix}\) |
\(\begin{matrix} \mathrm{d}x\\\mathrm{d}x \end{matrix}\) |
\(\begin{matrix} \mathrm{d}x\\\mathrm{d}x \end{matrix}\) |
| \(\begin{matrix}f_{6}\\f_{9}\end{matrix}\) |
\(\begin{matrix} \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + & \texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + & \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y \\ \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + & \texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + & \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y \end{matrix}\) |
\(\begin{matrix} \mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y \end{matrix}\) |
\(\begin{matrix} \mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y \end{matrix}\) |
\(\begin{matrix} \mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y \end{matrix}\) |
\(\begin{matrix} \mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y \end{matrix}\) |
| \(\begin{matrix}f_{5}\\f_{10}\end{matrix}\) |
\(\begin{matrix} \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x & + & \texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + & \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y \\ \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x & + & \texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + & \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y \end{matrix}\) |
\(\begin{matrix} \mathrm{d}y\\\mathrm{d}y \end{matrix}\) |
\(\begin{matrix} \mathrm{d}y\\\mathrm{d}y \end{matrix}\) |
\(\begin{matrix} \mathrm{d}y\\\mathrm{d}y \end{matrix}\) |
\(\begin{matrix} \mathrm{d}y\\\mathrm{d}y \end{matrix}\) |
| \(\begin{matrix}f_{7}\\f_{11}\\f_{13}\\f_{14}\end{matrix}\) |
\(\begin{matrix} \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y & + & \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y \\ \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y & + & \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y \\ \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y & + & \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y \\ \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y & + & \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y \end{matrix}\) |
\(\begin{matrix} \mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\\\mathrm{d}x\\0 \end{matrix}\) |
\(\begin{matrix} \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\\0\\\mathrm{d}x \end{matrix}\) |
\(\begin{matrix} \mathrm{d}x\\0\\\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y \end{matrix}\) |
\(\begin{matrix} 0\\\mathrm{d}x\\\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y \end{matrix}\) |
| \(f_{15}\!\) | \(0\!\) | \(0\!\) | \(0\!\) | \(0\!\) | \(0\!\) |
Table A11. Partial Differentials and Relative Differentials
| \(f\!\) | \(\frac{\partial f}{\partial x}\!\) | \(\frac{\partial f}{\partial y}\!\) |
\(\begin{matrix} \mathrm{d}f = \\[2pt] \partial_x f \cdot \mathrm{d}x ~+~ \partial_y f \cdot \mathrm{d}y \end{matrix}\) |
\(\left. \frac{\partial x}{\partial y} \right| f\!\) | \(\left. \frac{\partial y}{\partial x} \right| f\!\) | |
| \(f_0\!\) | \(\texttt{(~)}\!\) | \(0\!\) | \(0\!\) | \(0\!\) | \(0\!\) | \(0\!\) |
| \(\begin{matrix}f_{1}\\f_{2}\\f_{4}\\f_{8}\end{matrix}\) |
\(\begin{matrix} \texttt{(} x \texttt{)(} y \texttt{)} \\ \texttt{(} x \texttt{)~} y \texttt{~} \\ \texttt{~} x \texttt{~(} y \texttt{)} \\ \texttt{~} x \texttt{~~} y \texttt{~} \end{matrix}\) |
\(\begin{matrix} \texttt{(} y \texttt{)} \\ \texttt{~} y \texttt{~} \\ \texttt{(} y \texttt{)} \\ \texttt{~} y \texttt{~} \end{matrix}\) |
\(\begin{matrix} \texttt{(} x \texttt{)} \\ \texttt{(} x \texttt{)} \\ \texttt{~} x \texttt{~} \\ \texttt{~} x \texttt{~} \end{matrix}\) |
\(\begin{matrix} \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y \\ \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y \\ \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y \\ \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y \end{matrix}\) |
\(\begin{matrix}\cdots\\\cdots\\\cdots\\\cdots\end{matrix}\) | \(\begin{matrix}\cdots\\\cdots\\\cdots\\\cdots\end{matrix}\) |
| \(\begin{matrix}f_{3}\\f_{12}\end{matrix}\) |
\(\begin{matrix} \texttt{(} x \texttt{)} \\ \texttt{~} x \texttt{~} \end{matrix}\) |
\(\begin{matrix}1\\1\end{matrix}\) | \(\begin{matrix}0\\0\end{matrix}\) | \(\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}\) | \(\begin{matrix}\cdots\\\cdots\end{matrix}\) | \(\begin{matrix}\cdots\\\cdots\end{matrix}\) |
| \(\begin{matrix}f_{6}\\f_{9}\end{matrix}\) |
\(\begin{matrix} \texttt{~(} x \texttt{,~} y \texttt{)~} \\ \texttt{((} x \texttt{,~} y \texttt{))} \end{matrix}\) |
\(\begin{matrix}1\\1\end{matrix}\) | \(\begin{matrix}1\\1\end{matrix}\) | \(\begin{matrix}\mathrm{d}x & + & \mathrm{d}y\\\mathrm{d}x & + & \mathrm{d}y\end{matrix}\) | \(\begin{matrix}\cdots\\\cdots\end{matrix}\) | \(\begin{matrix}\cdots\\\cdots\end{matrix}\) |
| \(\begin{matrix}f_{5}\\f_{10}\end{matrix}\) |
\(\begin{matrix} \texttt{(} y \texttt{)} \\ \texttt{~} y \texttt{~} \end{matrix}\) |
\(\begin{matrix}0\\0\end{matrix}\) | \(\begin{matrix}1\\1\end{matrix}\) | \(\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}\) | \(\begin{matrix}\cdots\\\cdots\end{matrix}\) | \(\begin{matrix}\cdots\\\cdots\end{matrix}\) |
| \(\begin{matrix}f_{7}\\f_{11}\\f_{13}\\f_{14}\end{matrix}\) |
\(\begin{matrix} \texttt{(~} x \texttt{~~} y \texttt{~)} \\ \texttt{(~} x \texttt{~(} y \texttt{))} \\ \texttt{((} x \texttt{)~} y \texttt{~)} \\ \texttt{((} x \texttt{)(} y \texttt{))} \end{matrix}\) |
\(\begin{matrix} \texttt{~} y \texttt{~} \\ \texttt{(} y \texttt{)} \\ \texttt{~} y \texttt{~} \\ \texttt{(} y \texttt{)} \end{matrix}\) |
\(\begin{matrix} \texttt{~} x \texttt{~} \\ \texttt{~} x \texttt{~} \\ \texttt{(} x \texttt{)} \\ \texttt{(} x \texttt{)} \end{matrix}\) |
\(\begin{matrix} \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y \\ \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y \\ \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y \\ \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y \end{matrix}\) |
\(\begin{matrix}\cdots\\\cdots\\\cdots\\\cdots\end{matrix}\) | \(\begin{matrix}\cdots\\\cdots\\\cdots\\\cdots\end{matrix}\) |
| \(f_{15}\!\) | \(\texttt{((~))}\!\) | \(0\!\) | \(0\!\) | \(0\!\) | \(0\!\) | \(0\!\) |
Table A12. Detail of Calculation for the Difference Map
| \(f\!\) |
\(\begin{array}{cr} ~ & \mathrm{E}f|_{\mathrm{d}x ~ \mathrm{d}y} \\[4pt] + & f|_{\mathrm{d}x ~ \mathrm{d}y} \\[4pt] = & \mathrm{D}f|_{\mathrm{d}x ~ \mathrm{d}y} \end{array}\) |
\(\begin{array}{cr} ~ & \mathrm{E}f|_{\texttt{(} \mathrm{d}x \texttt{)} \mathrm{d}y} \\[4pt] + & f|_{\texttt{(} \mathrm{d}x \texttt{)} \mathrm{d}y} \\[4pt] = & \mathrm{D}f|_{\texttt{(} \mathrm{d}x \texttt{)} \mathrm{d}y} \end{array}\) |
\(\begin{array}{cr} ~ & \mathrm{E}f|_{\mathrm{d}x \texttt{(} \mathrm{d}y \texttt{)}} \\[4pt] + & f|_{\mathrm{d}x \texttt{(} \mathrm{d}y \texttt{)}} \\[4pt] = & \mathrm{D}f|_{\mathrm{d}x \texttt{(} \mathrm{d}y \texttt{)}} \end{array}\) |
\(\begin{array}{cr} ~ & \mathrm{E}f|_{\texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)}} \\[4pt] + & f|_{\texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)}} \\[4pt] = & \mathrm{D}f|_{\texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)}} \end{array}\) | |
| \(f_{0}\!\) | \(0\!\) | \(0 ~+~ 0 ~=~ 0\!\) | \(0 ~+~ 0 ~=~ 0\!\) | \(0 ~+~ 0 ~=~ 0\!\) | \(0 ~+~ 0 ~=~ 0\!\) |
| \(f_{1}\!\) |
\(\texttt{~(} x \texttt{)(} y \texttt{)~}\!\) |
\(\begin{matrix} ~ & \texttt{~~} x \texttt{~~} y \texttt{~~} \\[4pt] + & \texttt{~(} x \texttt{)(} y \texttt{)~} \\[4pt] = & \texttt{((} x \texttt{,~} y \texttt{))} \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{~~} x \texttt{~(} y \texttt{)~} \\[4pt] + & \texttt{~(} x \texttt{)(} y \texttt{)~} \\[4pt] = & \texttt{~~} ~ \texttt{~(} y \texttt{)~} \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{~(} x \texttt{)~} y \texttt{~~} \\[4pt] + & \texttt{~(} x \texttt{)(} y \texttt{)~} \\[4pt] = & \texttt{~(} x \texttt{)~} ~ \texttt{~~} \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{~(} x \texttt{)(} y \texttt{)~} \\[4pt] + & \texttt{~(} x \texttt{)(} y \texttt{)~} \\[4pt] = & 0 \end{matrix}\) |
| \(f_{2}\!\) |
\(\texttt{~(} x \texttt{)~} y \texttt{~~}\!\) |
\(\begin{matrix} ~ & \texttt{~~} x \texttt{~(} y \texttt{)~} \\[4pt] + & \texttt{~(} x \texttt{)~} y \texttt{~~} \\[4pt] = & \texttt{~(} x \texttt{,~} y \texttt{)~} \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{~~} x \texttt{~~} y \texttt{~~} \\[4pt] + & \texttt{~(} x \texttt{)~} y \texttt{~~} \\[4pt] = & \texttt{~~} ~ \texttt{~~} y \texttt{~~} \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{~(} x \texttt{)(} y \texttt{)~} \\[4pt] + & \texttt{~(} x \texttt{)~} y \texttt{~~} \\[4pt] = & \texttt{~(} x \texttt{)~} ~ \texttt{~~} \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{~(} x \texttt{)~} y \texttt{~~} \\[4pt] + & \texttt{~(} x \texttt{)~} y \texttt{~~} \\[4pt] = & 0 \end{matrix}\) |
| \(f_{4}\!\) |
\(\texttt{~~} x \texttt{~(} y \texttt{)~}\!\) |
\(\begin{matrix} ~ & \texttt{~(} x \texttt{)~} y \texttt{~~} \\[4pt] + & \texttt{~~} x \texttt{~(} y \texttt{)~} \\[4pt] = & \texttt{~(} x \texttt{,~} y \texttt{)~} \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{~(} x \texttt{)(} y \texttt{)~} \\[4pt] + & \texttt{~~} x \texttt{~(} y \texttt{)~} \\[4pt] = & \texttt{~~} ~ \texttt{~(} y \texttt{)~} \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{~~} x \texttt{~~} y \texttt{~~} \\[4pt] + & \texttt{~~} x \texttt{~(} y \texttt{)~} \\[4pt] = & \texttt{~~} x \texttt{~~} ~ \texttt{~~} \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{~~} x \texttt{~(} y \texttt{)~} \\[4pt] + & \texttt{~~} x \texttt{~(} y \texttt{)~} \\[4pt] = & 0 \end{matrix}\) |
| \(f_{8}\!\) |
\(\texttt{~~} x \texttt{~~} y \texttt{~~}\!\) |
\(\begin{matrix} ~ & \texttt{~(} x \texttt{)(} y \texttt{)~} \\[4pt] + & \texttt{~~} x \texttt{~~} y \texttt{~~} \\[4pt] = & \texttt{((} x \texttt{,~} y \texttt{))} \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{~(} x \texttt{)~} y \texttt{~~} \\[4pt] + & \texttt{~~} x \texttt{~~} y \texttt{~~} \\[4pt] = & \texttt{~~} ~ \texttt{~~} y \texttt{~~} \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{~~} x \texttt{~(} y \texttt{)~} \\[4pt] + & \texttt{~~} x \texttt{~~} y \texttt{~~} \\[4pt] = & \texttt{~~} x \texttt{~~} ~ \texttt{~~} \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{~~} x \texttt{~~} y \texttt{~~} \\[4pt] + & \texttt{~~} x \texttt{~~} y \texttt{~~} \\[4pt] = & 0 \end{matrix}\) |
| \(f_{3}\!\) |
\(\texttt{(} x \texttt{)}\!\) |
\(\begin{matrix} ~ & x \\[4pt] + & \texttt{(} x \texttt{)} \\[4pt] = & 1 \end{matrix}\) |
\(\begin{matrix} ~ & x \\[4pt] + & \texttt{(} x \texttt{)} \\[4pt] = & 1 \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{(} x \texttt{)} \\[4pt] + & \texttt{(} x \texttt{)} \\[4pt] = & 0 \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{(} x \texttt{)} \\[4pt] + & \texttt{(} x \texttt{)} \\[4pt] = & 0 \end{matrix}\) |
| \(f_{12}\!\) |
\(x\!\) |
\(\begin{matrix} ~ & \texttt{(} x \texttt{)} \\[4pt] + & x \\[4pt] = & 1 \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{(} x \texttt{)} \\[4pt] + & x \\[4pt] = & 1 \end{matrix}\) |
\(\begin{matrix} ~ & x \\[4pt] + & x \\[4pt] = & 0 \end{matrix}\) |
\(\begin{matrix} ~ & x \\[4pt] + & x \\[4pt] = & 0 \end{matrix}\) |
| \(f_{6}\!\) |
\(\texttt{~(} x \texttt{,~} y \texttt{)~}\!\) |
\(\begin{matrix} ~ & \texttt{~(} x \texttt{,~} y \texttt{)~} \\[4pt] + & \texttt{~(} x \texttt{,~} y \texttt{)~} \\[4pt] = & 0 \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{((} x \texttt{,~} y \texttt{))} \\[4pt] + & \texttt{~(} x \texttt{,~} y \texttt{)~} \\[4pt] = & 1 \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{((} x \texttt{,~} y \texttt{))} \\[4pt] + & \texttt{~(} x \texttt{,~} y \texttt{)~} \\[4pt] = & 1 \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{~(} x \texttt{,~} y \texttt{)~} \\[4pt] + & \texttt{~(} x \texttt{,~} y \texttt{)~} \\[4pt] = & 0 \end{matrix}\) |
| \(f_{9}\!\) |
\(\texttt{((} x \texttt{,~} y \texttt{))}\!\) |
\(\begin{matrix} ~ & \texttt{((} x \texttt{,~} y \texttt{))} \\[4pt] + & \texttt{((} x \texttt{,~} y \texttt{))} \\[4pt] = & 0 \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{~(} x \texttt{,~} y \texttt{)~} \\[4pt] + & \texttt{((} x \texttt{,~} y \texttt{))} \\[4pt] = & 1 \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{~(} x \texttt{,~} y \texttt{)~} \\[4pt] + & \texttt{((} x \texttt{,~} y \texttt{))} \\[4pt] = & 1 \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{((} x \texttt{,~} y \texttt{))} \\[4pt] + & \texttt{((} x \texttt{,~} y \texttt{))} \\[4pt] = & 0 \end{matrix}\) |
| \(f_{5}\!\) |
\(\texttt{(} y \texttt{)}\!\) |
\(\begin{matrix} ~ & y \\[4pt] + & \texttt{(} y \texttt{)} \\[4pt] = & 1 \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{(} y \texttt{)} \\[4pt] + & \texttt{(} y \texttt{)} \\[4pt] = & 0 \end{matrix}\) |
\(\begin{matrix} ~ & y \\[4pt] + & \texttt{(} y \texttt{)} \\[4pt] = & 1 \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{(} y \texttt{)} \\[4pt] + & \texttt{(} y \texttt{)} \\[4pt] = & 0 \end{matrix}\) |
| \(f_{10}\!\) |
\(y\!\) |
\(\begin{matrix} ~ & \texttt{(} y \texttt{)} \\[4pt] + & y \\[4pt] = & 1 \end{matrix}\) |
\(\begin{matrix} ~ & y \\[4pt] + & y \\[4pt] = & 0 \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{(} y \texttt{)} \\[4pt] + & y \\[4pt] = & 1 \end{matrix}\) |
\(\begin{matrix} ~ & y \\[4pt] + & y \\[4pt] = & 0 \end{matrix}\) |
| \(f_{7}\!\) |
\(\texttt{~(} x \texttt{~~} y \texttt{)~}\!\) |
\(\begin{matrix} ~ & \texttt{((} x \texttt{)(} y \texttt{))} \\[4pt] + & \texttt{~(} x \texttt{~~} y \texttt{)~} \\[4pt] = & \texttt{((} x \texttt{,~} y \texttt{))} \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{((} x \texttt{)~} y \texttt{)~} \\[4pt] + & \texttt{~(} x \texttt{~~} y \texttt{)~} \\[4pt] = & \texttt{~~} ~ \texttt{~~} y \texttt{~~} \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{~(} x \texttt{~(} y \texttt{))} \\[4pt] + & \texttt{~(} x \texttt{~~} y \texttt{)~} \\[4pt] = & \texttt{~~} x \texttt{~~} ~ \texttt{~~} \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{~(} x \texttt{~~} y \texttt{)~} \\[4pt] + & \texttt{~(} x \texttt{~~} y \texttt{)~} \\[4pt] = & 0 \end{matrix}\) |
| \(f_{11}\!\) |
\(\texttt{~(} x \texttt{~(} y \texttt{))}\!\) |
\(\begin{matrix} ~ & \texttt{((} x \texttt{)~} y \texttt{)~} \\[4pt] + & \texttt{~(} x \texttt{~(} y \texttt{))} \\[4pt] = & \texttt{~(} x \texttt{,~} y \texttt{)~} \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{((} x \texttt{)(} y \texttt{))} \\[4pt] + & \texttt{~(} x \texttt{~(} y \texttt{))} \\[4pt] = & \texttt{~~} ~ \texttt{~(} y \texttt{)~} \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{~(} x \texttt{~~} y \texttt{)~} \\[4pt] + & \texttt{~(} x \texttt{~(} y \texttt{))} \\[4pt] = & \texttt{~~} x \texttt{~~} ~ \texttt{~~} \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{~(} x \texttt{~(} y \texttt{))} \\[4pt] + & \texttt{~(} x \texttt{~(} y \texttt{))} \\[4pt] = & 0 \end{matrix}\) |
| \(f_{13}\!\) |
\(\texttt{((} x \texttt{)~} y \texttt{)~}\!\) |
\(\begin{matrix} ~ & \texttt{~(} x \texttt{~(} y \texttt{))} \\[4pt] + & \texttt{((} x \texttt{)~} y \texttt{)~} \\[4pt] = & \texttt{~(} x \texttt{,~} y \texttt{)~} \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{~(} x \texttt{~~} y \texttt{)~} \\[4pt] + & \texttt{((} x \texttt{)~} y \texttt{)~} \\[4pt] = & \texttt{~~} ~ \texttt{~~} y \texttt{~~} \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{((} x \texttt{)(} y \texttt{))} \\[4pt] + & \texttt{((} x \texttt{)~} y \texttt{)~} \\[4pt] = & \texttt{~(} x \texttt{)~} ~ \texttt{~~} \end{matrix}\!\) |
\(\begin{matrix} ~ & \texttt{((} x \texttt{)~} y \texttt{)~} \\[4pt] + & \texttt{((} x \texttt{)~} y \texttt{)~} \\[4pt] = & 0 \end{matrix}\) |
| \(f_{14}\!\) |
\(\texttt{((} x \texttt{)(} y \texttt{))}\!\) |
\(\begin{matrix} ~ & \texttt{~(} x \texttt{~~} y \texttt{)~} \\[4pt] + & \texttt{((} x \texttt{)(} y \texttt{))} \\[4pt] = & \texttt{((} x \texttt{,~} y \texttt{))} \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{~(} x \texttt{~(} y \texttt{))} \\[4pt] + & \texttt{((} x \texttt{)(} y \texttt{))} \\[4pt] = & \texttt{~~} ~ \texttt{~(} y \texttt{)~} \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{((} x \texttt{)~} y \texttt{)~} \\[4pt] + & \texttt{((} x \texttt{)(} y \texttt{))} \\[4pt] = & \texttt{~(} x \texttt{)~} ~ \texttt{~~} \end{matrix}\) |
\(\begin{matrix} ~ & \texttt{((} x \texttt{)(} y \texttt{))} \\[4pt] + & \texttt{((} x \texttt{)(} y \texttt{))} \\[4pt] = & 0 \end{matrix}\) |
| \(f_{15}\!\) | \(1\!\) | \(1 ~+~ 1 ~=~ 0\!\) | \(1 ~+~ 1 ~=~ 0\!\) | \(1 ~+~ 1 ~=~ 0\!\) | \(1 ~+~ 1 ~=~ 0\!\) |
Appendix 3. Computational Details
Operator Maps for the Logical Conjunction f8(u, v)
Computation of εf8
|
\(\begin{array}{*{10}{l}} \boldsymbol\varepsilon f_{8} & = && f_{8}(u, v) \\[4pt] & = && uv \\[4pt] & = && uv \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} & + & uv \cdot \texttt{(} \mathrm{d}u \texttt{)} ~ \mathrm{d}v & + & uv \cdot \mathrm{d}u ~ \texttt{(} \mathrm{d}v \texttt{)} & + & uv \cdot \mathrm{d}u ~ \mathrm{d}v \\[20pt] \boldsymbol\varepsilon f_{8} & = && uv \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} \\[4pt] && + & uv \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} \\[4pt] && + & uv \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} \\[4pt] && + & uv \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} \end{array}\!\) |
Computation of Ef8
|
\(\begin{array}{*{9}{l}} \mathrm{E}f_{8} & = & f_{8}(u + \mathrm{d}u, v + \mathrm{d}v) \\[4pt] & = & \texttt{(} u \texttt{,} \mathrm{d}u \texttt{)(} v \texttt{,} \mathrm{d}v \texttt{)} \\[4pt] & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot f_{8}(\texttt{(} \mathrm{d}u \texttt{)}, \texttt{(} \mathrm{d}v \texttt{)}) & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot f_{8}(\texttt{(} \mathrm{d}u \texttt{)}, \mathrm{d}v) & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot f_{8}(\mathrm{d}u, \texttt{(} \mathrm{d}v \texttt{)}) & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot f_{8}(\mathrm{d}u, \mathrm{d}v) \\[4pt] & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} ~ \mathrm{d}v & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \mathrm{d}u ~ \texttt{(} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v \\[20pt] \mathrm{E}f_{8} & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} \\[4pt] &&& + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} ~ \mathrm{d}v \\[4pt] &&&&& + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \mathrm{d}u ~ \texttt{(} \mathrm{d}v \texttt{)} \\[4pt] &&&&&&& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v \end{array}\!\) |
|
\(\begin{array}{*{9}{c}} \mathrm{E}f_{8} & = & (u + \mathrm{d}u) \cdot (v + \mathrm{d}v) \\[6pt] & = & u \cdot v & + & u \cdot \mathrm{d}v & + & v \cdot \mathrm{d}u & + & \mathrm{d}u \cdot \mathrm{d}v \\[6pt] \mathrm{E}f_{8} & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} ~ \mathrm{d}v & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \mathrm{d}u ~ \texttt{(} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v \end{array}\!\) |
Computation of Df8
|
\(\begin{array}{*{10}{l}} \mathrm{D}f_{8} & = && \mathrm{E}f_{8} & + & \boldsymbol\varepsilon f_{8} \\[4pt] & = && f_{8}(u + \mathrm{d}u, v + \mathrm{d}v) & + & f_{8}(u, v) \\[4pt] & = && \texttt{(} u \texttt{,} \mathrm{d}u \texttt{)(} v \texttt{,} \mathrm{d}v \texttt{)} & + & uv \\[20pt] \mathrm{D}f_{8} & = && 0 & + & 0 & + & 0 & + & 0 \\[4pt] && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~~} & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} & + & 0 & + & 0 \\[4pt] && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)~} & + & 0 & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} & + & 0 \\[4pt] && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~~} & + & 0 & + & 0 & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~} \mathrm{d}v \texttt{~} \\[20pt] \mathrm{D}f_{8} & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~} \mathrm{d}v \texttt{~} \end{array}\!\) |
|
\(\begin{array}{*{9}{l}} \mathrm{D}f_{8} & = & \boldsymbol\varepsilon f_{8} & + & \mathrm{E}f_{8} \\[6pt] & = & f_{8}(u, v) & + & f_{8}(u + \mathrm{d}u, v + \mathrm{d}v) \\[6pt] & = & uv & + & \texttt{(} u \texttt{,} \mathrm{d}u \texttt{)(} v \texttt{,} \mathrm{d}v \texttt{)} \\[6pt] & = & 0 & + & u \cdot \mathrm{d}v & + & v \cdot \mathrm{d}u & + & \mathrm{d}u ~ \mathrm{d}v \\[6pt] \mathrm{D}f_{8} & = & 0 & + & u \cdot \texttt{(} \mathrm{d}u \texttt{)} ~ \mathrm{d}v & + & v \cdot \mathrm{d}u ~ \texttt{(} \mathrm{d}v \texttt{)} & + & \texttt{((} u \texttt{,} v \texttt{))} \cdot \mathrm{d}u ~ \mathrm{d}v \end{array}\) |
|
\(\begin{array}{c*{9}{l}} \mathrm{D}f_{8} & = & \boldsymbol\varepsilon f_{8} ~+~ \mathrm{E}f_{8} \\[20pt] \boldsymbol\varepsilon f_{8} & = & u \,\cdot\, v \,\cdot\, \texttt{(} \mathrm{d}u \texttt{)} \texttt{(} \mathrm{d}v \texttt{)} & + & u \,\cdot\, v \,\cdot\, \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v & + & ~ u \,\cdot\, v \,\cdot\, \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} & + & ~ u \;\cdot\; v \;\cdot\; \mathrm{d}u ~ \mathrm{d}v \\[6pt] \mathrm{E}f_{8} & = & u \,\cdot\, v \,\cdot\, \texttt{(} \mathrm{d}u \texttt{)} \texttt{(} \mathrm{d}v \texttt{)} & + & u ~ \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v & + & \texttt{(} u \texttt{)} ~ v \,\cdot\, \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{)} \texttt{(} v \texttt{)} \cdot\, \mathrm{d}u ~ \mathrm{d}v \\[20pt] \mathrm{D}f_{8} & = & ~ ~ 0 ~~ \cdot ~ \texttt{(} \mathrm{d}u \texttt{)} \texttt{(} \mathrm{d}v \texttt{)} & + & ~ ~ u ~~ \cdot ~ \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v & + & ~ ~ ~ v ~~ \cdot ~ \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} & + & \texttt{((} u \texttt{,} v \texttt{))} \cdot \mathrm{d}u ~ \mathrm{d}v \end{array}\!\) |
Computation of df8
|
\(\begin{array}{c*{8}{l}} \mathrm{D}f_{8} & = & uv \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} ~ \mathrm{d}v & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u ~ \texttt{(} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v \\[6pt] \Downarrow \\[6pt] \mathrm{d}f_{8} & = & uv \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}v & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 \end{array}\) |
Computation of rf8
|
\(\begin{array}{c*{8}{l}} \mathrm{r}f_{8} & = & \mathrm{D}f_{8} ~+~ \mathrm{d}f_{8} \\[20pt] \mathrm{D}f_{8} & = & uv \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v \\[6pt] \mathrm{d}f_{8} & = & uv \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}v & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 \\[20pt] \mathrm{r}f_{8} & = & uv \cdot \mathrm{d}u ~ \mathrm{d}v & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u ~ \mathrm{d}v & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v \end{array}\) |
Computation Summary for Conjunction
|
\(\begin{array}{c*{8}{l}} \boldsymbol\varepsilon f_{8} & = & uv \cdot 1 & + & u \texttt{(} v \texttt{)} \cdot 0 & + & \texttt{(} u \texttt{)} v \cdot 0 & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 \\[6pt] \mathrm{E}f_{8} & = & uv \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v \\[6pt] \mathrm{D}f_{8} & = & uv \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v \\[6pt] \mathrm{d}f_{8} & = & uv \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}v & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 \\[6pt] \mathrm{r}f_{8} & = & uv \cdot \mathrm{d}u ~ \mathrm{d}v & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u ~ \mathrm{d}v & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v \end{array}\) |
Operator Maps for the Logical Equality f9(u, v)
Computation of εf9
|
\(\begin{array}{*{10}{l}} \boldsymbol\varepsilon f_{9} & = && f_{9}(u, v) \\[4pt] & = && \texttt{((} u \texttt{,~} v \texttt{))} \\[4pt] & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot f_{9}(1, 1) & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot f_{9}(1, 0) & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot f_{9}(0, 1) & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot f_{9}(0, 0) \\[4pt] & = && u v & + & 0 & + & 0 & + & \texttt{(} u \texttt{)(} v \texttt{)} \\[20pt] \boldsymbol\varepsilon f_{9} & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} & + & 0 & + & 0 & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} \\[4pt] && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} & + & 0 & + & 0 & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} \\[4pt] && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} & + & 0 & + & 0 & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} \\[4pt] && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} & + & 0 & + & 0 & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} \end{array}\) |
Computation of Ef9
|
\(\begin{array}{*{10}{l}} \mathrm{E}f_{9} & = && f_{9}(u + \mathrm{d}u, v + \mathrm{d}v) \\[4pt] & = && \texttt{(((} u \texttt{,} \mathrm{d}u \texttt{),(} v \texttt{,} \mathrm{d}v \texttt{)))} \\[4pt] & = && \texttt{ } u \texttt{ } v \texttt{ } \!\cdot\! f_{9}(\texttt{(} \mathrm{d}u \texttt{)}, \texttt{(} \mathrm{d}v \texttt{)}) & + & \texttt{ } u \texttt{ (} v \texttt{)} \!\cdot\! f_{9}(\texttt{(} \mathrm{d}u \texttt{)}, \texttt{ } \mathrm{d}v \texttt{ }) & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! f_{9}(\texttt{ } \mathrm{d}u \texttt{ }, \texttt{(} \mathrm{d}v \texttt{)}) & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! f_{9}(\texttt{ } \mathrm{d}u \texttt{ }, \texttt{ } \mathrm{d}v \texttt{ }) \\[4pt] & = && \texttt{ } u \texttt{ } v \texttt{ } \!\cdot\! \texttt{((} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{))} & + & \texttt{ } u \texttt{ (} v \texttt{)} \!\cdot\! \texttt{ (} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{) } & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! \texttt{ (} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{) } & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{((} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{))} \\[20pt] \mathrm{E}f_{9} & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} & + & 0 & + & 0 & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} \\[4pt] && + & 0 & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} & + & 0 \\[4pt] && + & 0 & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} & + & 0 \\[4pt] && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} & + & 0 & + & 0 & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} \end{array}\) |
Computation of Df9
|
\(\begin{array}{*{10}{l}} \mathrm{D}f_{9} & = && \mathrm{E}f_{9} & + & \boldsymbol\varepsilon f_{9} \\[4pt] & = && f_{9}(u + \mathrm{d}u, v + \mathrm{d}v) & + & f_{9}(u, v) \\[4pt] & = && \texttt{(((} u \texttt{,} \mathrm{d}u \texttt{),(} v \texttt{,} \mathrm{d}v \texttt{)))} & + & \texttt{((} u \texttt{,} v \texttt{))} \\[20pt] \mathrm{D}f_{9} & = && 0 & + & 0 & + & 0 & + & 0 \\[4pt] && + & \texttt{ } u \texttt{ } v \texttt{ } \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} & + & \texttt{ } u \texttt{ (} v \texttt{)} \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} \\[4pt] && + & \texttt{ } u \texttt{ } v \texttt{ } \!\cdot\! \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} & + & \texttt{ } u \texttt{ (} v \texttt{)} \!\cdot\! \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} \\[4pt] && + & 0 & + & 0 & + & 0 & + & 0 \\[20pt] \mathrm{D}f_{9} & = && \texttt{ } u \texttt{ } v \texttt{ } \!\cdot\! \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} & + & \texttt{ } u \texttt{ (} v \texttt{)} \!\cdot\! \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} \end{array}\!\) |
|
\(\begin{array}{*{9}{l}} \mathrm{D}f_{9} & = & 0 \cdot \mathrm{d}u ~ \mathrm{d}v & + & 1 \cdot \mathrm{d}u ~ \texttt{(} \mathrm{d}v \texttt{)} & + & 1 \cdot \texttt{(} \mathrm{d}u \texttt{)} ~ \mathrm{d}v & + & 0 \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} \end{array}\) |
Computation of df9
|
\(\begin{array}{c*{8}{l}} \mathrm{D}f_{9} & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} \\[6pt] \Downarrow \\[6pt] \mathrm{d}f_{9} & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} \end{array}\) |
Computation of rf9
|
\(\begin{array}{c*{8}{l}} \mathrm{r}f_{9} & = & \mathrm{D}f_{9} ~+~ \mathrm{d}f_{9} \\[20pt] \mathrm{D}f_{9} & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} \\[6pt] \mathrm{d}f_{9} & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} \\[20pt] \mathrm{r}f_{9} & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot 0 & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot 0 & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot 0 & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 \end{array}\) |
Computation Summary for Equality
|
\(\begin{array}{c*{8}{l}} \boldsymbol\varepsilon f_{9} & = & uv \cdot 1 & + & u \texttt{(} v \texttt{)} \cdot 0 & + & \texttt{(} u \texttt{)} v \cdot 0 & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 1 \\[6pt] \mathrm{E}f_{9} & = & uv \cdot \texttt{((} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{))} & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{))} \\[6pt] \mathrm{D}f_{9} & = & uv \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} \\[6pt] \mathrm{d}f_{9} & = & uv \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} \\[6pt] \mathrm{r}f_{9} & = & uv \cdot 0 & + & u \texttt{(} v \texttt{)} \cdot 0 & + & \texttt{(} u \texttt{)} v \cdot 0 & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 \end{array}\) |
Operator Maps for the Logical Implication f11(u, v)
Computation of εf11
|
\(\begin{array}{*{10}{l}} \boldsymbol\varepsilon f_{11} & = && f_{11}(u, v) \\[4pt] & = && \texttt{(} u \texttt{(} v \texttt{))} \\[4pt] & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot f_{11}(1, 1) & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot f_{11}(1, 0) & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot f_{11}(0, 1) & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot f_{11}(0, 0) \\[4pt] & = && \texttt{ } u \texttt{ } v \texttt{ } & + & 0 & + & \texttt{(} u \texttt{) } v \texttt{ } & + & \texttt{(} u \texttt{)(} v \texttt{)} \\[20pt] \boldsymbol\varepsilon f_{11} & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} & + & 0 & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} \\[4pt] && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} & + & 0 & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} \\[4pt] && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} & + & 0 & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} \\[4pt] && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} & + & 0 & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} \end{array}\!\) |
Computation of Ef11
|
\(\begin{array}{*{10}{l}} \mathrm{E}f_{11} & = && f_{11}(u + \mathrm{d}u, v + \mathrm{d}v) \\[4pt] & = && \texttt{(} \\ &&& \qquad \texttt{(} u \texttt{,} \mathrm{d}u \texttt{)} \\ &&& \texttt{(} \\ &&& \qquad \texttt{(} v \texttt{,} \mathrm{d}v \texttt{)} \\ &&& \texttt{))} \\[4pt] & = && u v \!\cdot\! \texttt{((} \mathrm{d}u \texttt{)((} \mathrm{d}v \texttt{)))} & + & u \texttt{(} v \texttt{)} \!\cdot\! \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} & + & \texttt{(} u \texttt{)} v \!\cdot\! \texttt{(} \mathrm{d}u \texttt{((} \mathrm{d}v \texttt{)))} & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{(} \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{))} \\[4pt] & = && u v \!\cdot\! \texttt{((} \mathrm{d}u \texttt{)} \mathrm{d}v \texttt{)} & + & u \texttt{(} v \texttt{)} \!\cdot\! \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} & + & \texttt{(} u \texttt{)} v \!\cdot\! \texttt{(} \mathrm{d}u ~ \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{(} \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{))} \\[20pt] \mathrm{E}f_{11} & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} & + & 0 & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} \\[4pt] && + & 0 & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} \\[4pt] && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} & + & 0 \\[4pt] && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} & + & 0 & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} \end{array}\) |
Computation of Df11
|
\(\begin{array}{*{10}{l}} \mathrm{D}f_{11} & = && \mathrm{E}f_{11} & + & \boldsymbol\varepsilon f_{11} \\[4pt] & = && f_{11}(u + \mathrm{d}u, v + \mathrm{d}v) & + & f_{11}(u, v) \\[4pt] & = && \texttt{(} \texttt{(} u \texttt{,} \mathrm{d}u \texttt{)} \texttt{(} \texttt{(} v \texttt{,} \mathrm{d}v \texttt{)} \texttt{))} & + & \texttt{(} u \texttt{(} v \texttt{))} \\[20pt] \mathrm{D}f_{11} & = && 0 & + & 0 & + & 0 & + & 0 \\[4pt] && + & u v \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v & + & u \texttt{(} v \texttt{)} \!\cdot\! \texttt{~(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~~} & + & 0 & + & 0 \\[4pt] && + & 0 & + & u \texttt{(} v \texttt{)} \!\cdot\! \texttt{~~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)~} & + & 0 & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} \\[4pt] && + & 0 & + & u \texttt{(} v \texttt{)} \!\cdot\! \texttt{~~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~~} & + & \texttt{(} u \texttt{)} v \!\cdot\! \mathrm{d}u ~ \mathrm{d}v & + & 0 \\[20pt] \mathrm{D}f_{11} & = && u v \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v & + & u \texttt{(} v \texttt{)} \!\cdot\! \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} & + & \texttt{(} u \texttt{)} v \!\cdot\! \mathrm{d}u ~ \mathrm{d}v & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} \end{array}\) |
|
\(\begin{array}{c*{9}{l}} \mathrm{D}f_{11} & = & \boldsymbol\varepsilon f_{11} ~+~ \mathrm{E}f_{11} \\[20pt] \boldsymbol\varepsilon f_{11} & = & u v \cdot 1 & + & u \texttt{(} v \texttt{)} \cdot 0 & + & \texttt{(} u \texttt{)} v \cdot 1 & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 1 \\[6pt] \mathrm{E}f_{11} & = & u v \cdot \texttt{((} \mathrm{d}u \texttt{)} \mathrm{d}v \texttt{)} & + & u \texttt{(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u ~ \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{))} \\[20pt] \mathrm{D}f_{11} & = & u v \cdot \texttt{~(} \mathrm{d}u \texttt{)} \mathrm{d}v \texttt{~} & + & u \texttt{(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} & + & \texttt{(} u \texttt{)} v \cdot \texttt{~} \mathrm{d}u ~ \mathrm{d}v \texttt{~} & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)~} \end{array}\) |
Computation of df11
|
\(\begin{array}{c*{8}{l}} \mathrm{D}f_{11} & = & u v \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v & + & u \texttt{(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u ~ \mathrm{d}v & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} \\[6pt] \Downarrow \\[6pt] \mathrm{d}f_{11} & = & u v \cdot \mathrm{d}v & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} & + & 0 & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u \end{array}\) |
Computation of rf11
|
\(\begin{array}{c*{8}{l}} \mathrm{r}f_{11} & = & \mathrm{D}f_{11} ~+~ \mathrm{d}f_{11} \\[20pt] \mathrm{D}f_{11} & = & u v \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v & + & u \texttt{(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u ~ \mathrm{d}v & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} \\[6pt] \mathrm{d}f_{11} & = & u v \cdot \mathrm{d}v & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} & + & 0 & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u \\[20pt] \mathrm{r}f_{11} & = & u v \cdot \mathrm{d}u ~ \mathrm{d}v & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u ~ \mathrm{d}v & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v \end{array}\) |
Computation Summary for Implication
|
\(\begin{array}{c*{8}{l}} \boldsymbol\varepsilon f_{11} & = & u v \cdot 1 & + & u \texttt{(} v \texttt{)} \cdot 0 & + & \texttt{(} u \texttt{)} v \cdot 1 & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 1 \\[6pt] \mathrm{E}f_{11} & = & u v \cdot \texttt{((} \mathrm{d}u \texttt{)} \mathrm{d}v \texttt{)} & + & u \texttt{(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u ~ \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{))} \\[6pt] \mathrm{D}f_{11} & = & u v \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v & + & u \texttt{(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u ~ \mathrm{d}v & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} \\[6pt] \mathrm{d}f_{11} & = & u v \cdot \mathrm{d}v & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} & + & 0 & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u \\[6pt] \mathrm{r}f_{11} & = & uv \cdot \mathrm{d}u ~ \mathrm{d}v & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u ~ \mathrm{d}v & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v \end{array}\) |
Operator Maps for the Logical Disjunction f14(u, v)
Computation of εf14
|
\(\begin{array}{*{10}{l}} \boldsymbol\varepsilon f_{14} & = && f_{14}(u, v) \\[4pt] & = && \texttt{((} u \texttt{)(} v \texttt{))} \\[4pt] & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot f_{14}(1, 1) & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot f_{14}(1, 0) & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot f_{14}(0, 1) & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot f_{14}(0, 0) \\[4pt] & = && \texttt{ } u \texttt{ } v \texttt{ } & + & \texttt{ } u \texttt{ (} v \texttt{)} & + & \texttt{(} u \texttt{) } v \texttt{ } & + & 0 \\[20pt] \boldsymbol\varepsilon f_{14} & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} & + & 0 \\[4pt] && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} & + & 0 \\[4pt] && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} & + & 0 \\[4pt] && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} & + & 0 \end{array}\) |
Computation of Ef14
|
\(\begin{array}{*{10}{l}} \mathrm{E}f_{14} & = && f_{14}(u + \mathrm{d}u, v + \mathrm{d}v) \\[4pt] & = && \texttt{((} \\ &&& \qquad \texttt{(} u \texttt{,} \mathrm{d}u \texttt{)} \\ &&& \texttt{)(} \\ &&& \qquad \texttt{(} v \texttt{,} \mathrm{d}v \texttt{)} \\ &&& \texttt{))} \\[4pt] & = && \texttt{ } u \texttt{ } v \texttt{ } \!\cdot\! f_{14}(\texttt{(} \mathrm{d}u \texttt{)}, \texttt{(} \mathrm{d}v \texttt{)}) & + & \texttt{ } u \texttt{ (} v \texttt{)} \!\cdot\! f_{14}(\texttt{(} \mathrm{d}u \texttt{)}, \texttt{ } \mathrm{d}v \texttt{ }) & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! f_{14}(\texttt{ } \mathrm{d}u \texttt{ }, \texttt{(} \mathrm{d}v \texttt{)}) & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! f_{14}(\texttt{ } \mathrm{d}u \texttt{ }, \texttt{ } \mathrm{d}v \texttt{ }) \\[4pt] & = && \texttt{ } u \texttt{ } v \texttt{ } \!\cdot\! \texttt{(} \mathrm{d}u \texttt{~} \mathrm{d}v \texttt{)} & + & \texttt{ } u \texttt{ (} v \texttt{)} \!\cdot\! \texttt{(} \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{))} & + & \texttt{(} u \texttt{) } v \texttt{ } \!\cdot\! \texttt{((} \mathrm{d}u \texttt{)} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} \\[20pt] \mathrm{E}f_{14} & = && \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} & + & 0 \\[4pt] && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} & + & 0 & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~} \\[4pt] && + & \texttt{ } u \texttt{ } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} & + & 0 & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)} \\[4pt] && + & 0 & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~} \end{array}\) |
Computation of Df14
|
\(\begin{array}{*{10}{l}} \mathrm{D}f_{14} & = && \mathrm{E}f_{14} & + & \boldsymbol\varepsilon f_{14} \\[4pt] & = && f_{14}(u + \mathrm{d}u, v + \mathrm{d}v) & + & f_{14}(u, v) \\[4pt] & = && \texttt{(((} u \texttt{,} \mathrm{d}u \texttt{))((} v \texttt{,} \mathrm{d}v \texttt{)))} & + & \texttt{((} u \texttt{)(} v \texttt{))} \\[20pt] \mathrm{D}f_{14} & = && 0 & + & 0 & + & 0 & + & 0 \\[4pt] && + & 0 & + & 0 & + & \texttt{(} u \texttt{)} v \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{~(} \mathrm{d}u \texttt{)~} \mathrm{d}v \texttt{~~} \\[4pt] && + & 0 & + & u \texttt{(} v \texttt{)} \!\cdot\! \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} & + & 0 & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{~~} \mathrm{d}u \texttt{~(} \mathrm{d}v \texttt{)~} \\[4pt] && + & uv \!\cdot\! \mathrm{d}u ~ \mathrm{d}v & + & 0 & + & 0 & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{~~} \mathrm{d}u \texttt{~~} \mathrm{d}v \texttt{~~} \\[20pt] \mathrm{D}f_{14} & = && uv \!\cdot\! \mathrm{d}u ~ \mathrm{d}v & + & u \texttt{(} v \texttt{)} \!\cdot\! \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{)} v \!\cdot\! \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v & + & \texttt{(} u \texttt{)(} v \texttt{)} \!\cdot\! \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} \end{array}\) |
|
\(\begin{array}{*{9}{l}} \mathrm{D}f_{14} & = & \texttt{((} u \texttt{,} v \texttt{))} \cdot \mathrm{d}u ~ \mathrm{d}v & + & \texttt{(} v \texttt{)} \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v & + & 0 \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} \end{array}\) |
Computation of df14
|
\(\begin{array}{c*{8}{l}} \mathrm{D}f_{14} & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot \mathrm{d}u ~ \mathrm{d}v & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \mathrm{d}u ~ \texttt{(} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)} ~ \mathrm{d}v & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} \\[6pt] \Downarrow \\[6pt] \mathrm{d}f_{14} & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot 0 & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \mathrm{d}u & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \mathrm{d}v & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} \end{array}\) |
Computation of rf14
|
\(\begin{array}{c*{8}{l}} \mathrm{r}f_{14} & = & \mathrm{D}f_{14} ~+~ \mathrm{d}f_{14} \\[20pt] \mathrm{D}f_{14} & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot \mathrm{d}u ~ \mathrm{d}v & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \mathrm{d}u ~ \texttt{(} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)} ~ \mathrm{d}v & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} \\[6pt] \mathrm{d}f_{14} & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot 0 & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \mathrm{d}u & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \mathrm{d}v & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} \\[20pt] \mathrm{r}f_{14} & = & \texttt{ } u \texttt{ } v \texttt{ } \cdot \mathrm{d}u ~ \mathrm{d}v & + & \texttt{ } u \texttt{ (} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v & + & \texttt{(} u \texttt{) } v \texttt{ } \cdot \mathrm{d}u ~ \mathrm{d}v & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v \end{array}\) |
Computation Summary for Disjunction
|
\(\begin{array}{c*{8}{l}} \boldsymbol\varepsilon f_{14} & = & uv \cdot 1 & + & u \texttt{(} v \texttt{)} \cdot 1 & + & \texttt{(} u \texttt{)} v \cdot 1 & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 \\[6pt] \mathrm{E}f_{14} & = & uv \cdot \texttt{(} \mathrm{d}u ~ \mathrm{d}v \texttt{)} & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{))} & + & \texttt{(} u \texttt{)} v \cdot \texttt{((} \mathrm{d}u \texttt{)} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} \\[6pt] \mathrm{D}f_{14} & = & uv \cdot \mathrm{d}u ~ \mathrm{d}v & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} \\[6pt] \mathrm{d}f_{14} & = & uv \cdot 0 & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}v & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} \\[6pt] \mathrm{r}f_{14} & = & uv \cdot \mathrm{d}u ~ \mathrm{d}v & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u ~ \mathrm{d}v & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u ~ \mathrm{d}v \end{array}\) |
Appendix 4. Source Materials
Appendix 5. Various Definitions of the Tangent Vector
References
- Ashby, William Ross (1956/1964), An Introduction to Cybernetics, Chapman and Hall, London, UK, 1956. Reprinted, Methuen and Company, London, UK, 1964.
- Awbrey, J., and Awbrey, S. (1989), "Theme One : A Program of Inquiry", Unpublished Manuscript, 09 Aug 1989. Microsoft Word Document.
- Edelman, Gerald M. (1988), Topobiology : An Introduction to Molecular Embryology, Basic Books, New York, NY.
- Leibniz, Gottfried Wilhelm, Freiherr von, Theodicy : Essays on the Goodness of God, The Freedom of Man, and The Origin of Evil, Austin Farrer (ed.), E.M. Huggard (trans.), based on C.J. Gerhardt (ed.), Collected Philosophical Works, 1875–1890, Routledge and Kegan Paul, London, UK, 1951. Reprinted, Open Court, La Salle, IL, 1985.
- McClelland, James L., and Rumelhart, David E. (1988), Explorations in Parallel Distributed Processing : A Handbook of Models, Programs, and Exercises, MIT Press, Cambridge, MA.
- Adaptive Systems
- Artificial Intelligence
- Boolean Algebra
- Boolean Functions
- Charles Sanders Peirce
- Combinatorics
- Computational Complexity
- Computer Science
- Cybernetics
- Differential Logic
- Discrete Systems
- Dynamical Systems
- Equational Reasoning
- Formal Languages
- Formal Sciences
- Formal Systems
- Graph Theory
- Group Theory
- Inquiry
- Inquiry Driven Systems
- Knowledge Representation
- Linguistics
- Logic
- Logical Graphs
- Mathematics
- Mathematical Systems Theory
- Philosophy
- Propositional Calculus
- Science
- Semiotics
- Systems Science
- Visualization