Difference between revisions of "User:Jon Awbrey/SEQUENCES"
| Jon Awbrey (talk | contribs) | Jon Awbrey (talk | contribs)  | ||
| Line 1,357: | Line 1,357: | ||
| <p><math>a(6) ~=~ 30</math></p> | <p><math>a(6) ~=~ 30</math></p> | ||
| |} | |} | ||
| + | |||
| + | ==A106177== | ||
| + | |||
| + | * [http://oeis.org/wiki/A106177 A106177] | ||
| + | |||
| + | ===Primal Codes of Finite Partial Functions on Positive Integers=== | ||
| + | |||
| + | {| align="center" | ||
| + | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | 1 & = & \varnothing \\ | ||
| + | 2 & = & 1\!:\!1 \\ | ||
| + | 3 & = & 2\!:\!1 \\ | ||
| + | 4 & = & 1\!:\!2 \\ | ||
| + | 5 & = & 3\!:\!1 \\ | ||
| + | 6 & = & 1\!:\!1 ~~ 2\!:\!1 \\ | ||
| + | 7 & = & 4\!:\!1 \\ | ||
| + | 8 & = & 1\!:\!3 \\ | ||
| + | 9 & = & 2\!:\!2 \\ | ||
| + | 10 & = & 1\!:\!1 ~~ 3\!:\!1 \\ | ||
| + | 11 & = & 5\!:\!1 \\ | ||
| + | 12 & = & 1\!:\!2 ~~ 2\!:\!1 \\ | ||
| + | 13 & = & 6\!:\!1 \\ | ||
| + | 14 & = & 1\!:\!1 ~~ 4\!:\!1 \\ | ||
| + | 15 & = & 2\!:\!1 ~~ 3\!:\!1 \\ | ||
| + | 16 & = & 1\!:\!4 \\ | ||
| + | 17 & = & 7\!:\!1 \\ | ||
| + | 18 & = & 1\!:\!1 ~~ 2\!:\!2 \\ | ||
| + | 19 & = & 8\!:\!1 \\ | ||
| + | 20 & = & 1\!:\!2 ~~ 3\!:\!1  | ||
| + | \end{array}</math> | ||
| + | |} | ||
| + | |||
| + | ===Wiki Table=== | ||
| + | |||
| + | {| align="center" style="font-weight:bold; text-align:center" | ||
| + | | || || || || || || || || | ||
| + | | <font color="red">1</font> | ||
| + | | | ||
| + | | <font color="red">1</font> | ||
| + | |- | ||
| + | | || || || || || || || | ||
| + | | <font color="red">2</font> | ||
| + | | || 1 || | ||
| + | | <font color="red">2</font> | ||
| + | |- | ||
| + | | || || || || || || | ||
| + | | <font color="red">3</font> | ||
| + | | || 1 || || 1 || | ||
| + | | <font color="red">3</font> | ||
| + | |- | ||
| + | | || || || || || | ||
| + | | <font color="red">4</font> | ||
| + | | || 1 || || 2 || || 1 || | ||
| + | | <font color="red">4</font> | ||
| + | |- | ||
| + | | || || || || | ||
| + | | <font color="red">5</font> | ||
| + | | || 1 || || 3 || || 1 || || 1 || | ||
| + | | <font color="red">5</font> | ||
| + | |- | ||
| + | | || || || | ||
| + | | <font color="red">6</font> | ||
| + | | || 1 || || 1 || || 1 || || 4 || || 1 || | ||
| + | | <font color="red">6</font> | ||
| + | |- | ||
| + | | || || | ||
| + | | <font color="red">7</font> | ||
| + | | || 1 || || 5 || || 2 || || 9 || || 1 || || 1 || | ||
| + | | <font color="red">7</font> | ||
| + | |- | ||
| + | | || | ||
| + | | <font color="red">8</font> | ||
| + | | || 1 || || 6 || || 1 || || 1 || || 1 || || 2 || || 1 || | ||
| + | | <font color="red">8</font> | ||
| + | |- | ||
| + | | | ||
| + | | <font color="red">9</font> | ||
| + | | || 1 || || 7 || || 1 || || 25|| || 1 || || 3 || || 1 || || 1 || | ||
| + | | <font color="red">9</font> | ||
| + | |- | ||
| + | | width="12pt" | <font color="red">10</font> | ||
| + | | width="12pt" | | ||
| + | | width="12pt" | 1 | ||
| + | | width="12pt" | | ||
| + | | width="12pt" | 1 | ||
| + | | width="12pt" | | ||
| + | | width="12pt" | 1 | ||
| + | | width="12pt" | | ||
| + | | width="12pt" | 36 | ||
| + | | width="12pt" | | ||
| + | | width="12pt" | 1 | ||
| + | | width="12pt" | | ||
| + | | width="12pt" | 2 | ||
| + | | width="12pt" | | ||
| + | | width="12pt" | 1 | ||
| + | | width="12pt" | | ||
| + | | width="12pt" | 8 | ||
| + | | width="12pt" | | ||
| + | | width="12pt" | 1 | ||
| + | | width="12pt" | | ||
| + | | width="12pt" | <font color="red">10</font> | ||
| + | |} | ||
| + | |||
| + | ===Wiki + TeX=== | ||
| + | |||
| + | ====Smallmatrix==== | ||
| + | |||
| + | {| align="center" | ||
| + | | | ||
| + | <math>\begin{smallmatrix} | ||
| + | & & & & & & & & & {\color{red}1} & & {\color{red}1} | ||
| + | \\ | ||
| + | & & & & & & & & {\color{red}2} & & 1 & & {\color{red}2} | ||
| + | \\ | ||
| + | & & & & & & & {\color{red}3} & & 1 & & 1 & & {\color{red}3} | ||
| + | \\ | ||
| + | & & & & & & {\color{red}4} & & 1 & & 2 & & 1 & & {\color{red}4} | ||
| + | \\ | ||
| + | & & & & & {\color{red}5} & & 1 & & 3 & & 1 & & 1 & & {\color{red}5} | ||
| + | \\ | ||
| + | & & & & {\color{red}6} & & 1 & & 1 & & 1 & & 4 & & 1 & & {\color{red}6} | ||
| + | \\ | ||
| + | & & & {\color{red}7} & & 1 & & 5 & & 2 & & 9 & & 1 & & 1 & & {\color{red}7} | ||
| + | \\ | ||
| + | & & {\color{red}8} & & 1 & & 6 & & 1 & & 1 & & 1 & & 2 & & 1 & & {\color{red}8} | ||
| + | \\ | ||
| + | & {\color{red}9} & & 1 & & 7 & & 1 & & 25 & & 1 & & 3 & & 1 & & 1 & & {\color{red}9} | ||
| + | \\ | ||
| + | {\color{red}10} & & 1 & & 1 & & 1 & & 36 & & 1 & & 2 & & 1 & & 8 & & 1 & & {\color{red}10} | ||
| + | \end{smallmatrix}</math> | ||
| + | |} | ||
| + | |||
| + | ====Array==== | ||
| + | |||
| + | {| align="center" | ||
| + | | | ||
| + | <math>\begin{array}{*{21}{c}} | ||
| + | & & & & & & & & & {\color{red}1} & & {\color{red}1} | ||
| + | \\ | ||
| + | & & & & & & & & {\color{red}2} & & 1 & & {\color{red}2} | ||
| + | \\ | ||
| + | & & & & & & & {\color{red}3} & & 1 & & 1 & & {\color{red}3} | ||
| + | \\ | ||
| + | & & & & & & {\color{red}4} & & 1 & & 2 & & 1 & & {\color{red}4} | ||
| + | \\ | ||
| + | & & & & & {\color{red}5} & & 1 & & 3 & & 1 & & 1 & & {\color{red}5} | ||
| + | \\ | ||
| + | & & & & {\color{red}6} & & 1 & & 1 & & 1 & & 4 & & 1 & & {\color{red}6} | ||
| + | \\ | ||
| + | & & & {\color{red}7} & & 1 & & 5 & & 2 & & 9 & & 1 & & 1 & & {\color{red}7} | ||
| + | \\ | ||
| + | & & {\color{red}8} & & 1 & & 6 & & 1 & & 1 & & 1 & & 2 & & 1 & & {\color{red}8} | ||
| + | \\ | ||
| + | & {\color{red}9} & & 1 & & 7 & & 1 & & 25 & & 1 & & 3 & & 1 & & 1 & & {\color{red}9} | ||
| + | \\ | ||
| + | {\color{red}10} & & 1 & & 1 & & 1 & & 36 & & 1 & & 2 & & 1 & & 8 & & 1 & & {\color{red}10} | ||
| + | \end{array}</math> | ||
| + | |} | ||
| + | |||
| + | ====Matrix==== | ||
| + | |||
| + | {| align="center" | ||
| + | | | ||
| + | <math>\begin{matrix} | ||
| + | n \circ m | ||
| + | \\ | ||
| + | 1 ~/~\backslash~ 1 | ||
| + | \\ | ||
| + | 2 ~/~ 1 ~\backslash~ 2 | ||
| + | \\ | ||
| + | 3 ~/~ 1 \cdot 1 ~\backslash~ 3 | ||
| + | \\ | ||
| + | 4 ~/~ 1 \cdot 2 \cdot 1 ~\backslash~ 4 | ||
| + | \\ | ||
| + | 5 ~/~ 1 \cdot 3 \cdot 1 \cdot 1 ~\backslash~ 5 | ||
| + | \\ | ||
| + | 6 ~/~ 1 \cdot 1 \cdot 1 \cdot 4 \cdot 1 ~\backslash~ 6 | ||
| + | \\ | ||
| + | 7 ~/~ 1 \cdot 5 \cdot 2 \cdot 9 \cdot 1 \cdot 1 ~\backslash~ 7 | ||
| + | \\ | ||
| + | 8 ~/~ 1 \cdot 6 \cdot 1 \cdot 1 \cdot 1 \cdot 2 \cdot 1 ~\backslash~ 8 | ||
| + | \\ | ||
| + | 9 ~/~ 1 \cdot 7 \cdot 1 \cdot 25\cdot 1 \cdot 3 \cdot 1 \cdot 1 ~\backslash~ 9 | ||
| + | \\ | ||
| + | 10 ~/~ 1 \cdot 1 \cdot 1 \cdot 36\cdot 1 \cdot 2 \cdot 1 \cdot 8 \cdot 1 ~\backslash~ 10 | ||
| + | \end{matrix}</math> | ||
| + | |} | ||
| + | |||
| + | ===ASCII=== | ||
| + | |||
| + | <pre> | ||
| + |  Example | ||
| + | |||
| + |     *                      n o m | ||
| + |     *                       \ / | ||
| + |     *                      1 . 1 | ||
| + |     *                     \ / \ / | ||
| + |     *                    2 . 1 . 2 | ||
| + |     *                   \ / \ / \ / | ||
| + |     *                  3 . 1 . 1 . 3 | ||
| + |     *                 \ / \ / \ / \ / | ||
| + |     *                4 . 1 . 2 . 1 . 4 | ||
| + |     *               \ / \ / \ / \ / \ / | ||
| + |     *              5 . 1 . 3 . 1 . 1 . 5 | ||
| + |     *             \ / \ / \ / \ / \ / \ / | ||
| + |     *            6 . 1 . 1 . 1 . 4 . 1 . 6 | ||
| + |     *           \ / \ / \ / \ / \ / \ / \ / | ||
| + |     *          7 . 1 . 5 . 2 . 9 . 1 . 1 . 7 | ||
| + |     *         \ / \ / \ / \ / \ / \ / \ / \ / | ||
| + |     *        8 . 1 . 6 . 1 . 1 . 1 . 2 . 1 . 8 | ||
| + |     *       \ / \ / \ / \ / \ / \ / \ / \ / \ / | ||
| + |     *      9 . 1 . 7 . 1 . 25. 1 . 3 . 1 . 1 . 9 | ||
| + |     *     \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / | ||
| + |     *   10 . 1 . 1 . 1 . 36. 1 . 2 . 1 . 8 . 1 . 10 | ||
| + |     * | ||
| + |     * Primal codes of finite partial functions on positive integers: | ||
| + |     * 1 = { } | ||
| + |     * 2 = 1:1 | ||
| + |     * 3 = 2:1 | ||
| + |     * 4 = 1:2 | ||
| + |     * 5 = 3:1 | ||
| + |     * 6 = 1:1 2:1 | ||
| + |     * 7 = 4:1 | ||
| + |     * 8 = 1:3 | ||
| + |     * 9 = 2:2 | ||
| + |     * 10 = 1:1 3:1 | ||
| + |     * 11 = 5:1 | ||
| + |     * 12 = 1:2 2:1 | ||
| + |     * 13 = 6:1 | ||
| + |     * 14 = 1:1 4:1 | ||
| + |     * 15 = 2:1 3:1 | ||
| + |     * 16 = 1:4 | ||
| + |     * 17 = 7:1 | ||
| + |     * 18 = 1:1 2:2 | ||
| + |     * 19 = 8:1 | ||
| + |     * 20 = 1:2 3:1 | ||
| + | </pre> | ||
| ==A109300== | ==A109300== | ||
Revision as of 08:33, 11 January 2010
A061396
Plain Wiki Table
Large Scale
Small Scale
Nested Wiki Table
Large Scale
Small Scale
| 
 | ||||||||||||||||||||||||||||||||||||
| 
 | ||||||||||||||||||||||||||||||||||||
| 
 | ||||||||||||||||||||||||||||||||||||
| 
 | ||||||||||||||||||||||||||||||||||||
| 
 | 
Old ASCII Version
Illustration of initial terms of A061396 Jon Awbrey (jawbrey(AT)oakland.edu) o-------------------------------------------------------------------------------- | integer factorization riff r.i.f.f. rote --> in parentheses | k p's k nodes 2k+1 nodes o-------------------------------------------------------------------------------- | | 1 1 blank blank @ blank | o-------------------------------------------------------------------------------- | | o---o | | | 2 p_1^1 p @ @ (()) | o-------------------------------------------------------------------------------- | | o---o | | | o---o | 3 p_2^1 = | | p_(p_1)^1 p_p @ @ ((())()) | ^ | \ | o | | o---o | o | | ^ o---o | 4 p_1^2 = / | | p_1^p_1 p^p @ @ (((()))) | o-------------------------------------------------------------------------------- | | o---o | | | o---o | | | 5 p_3 = o---o | p_(p_2) = | | p_(p_(p_1)) p_(p_p) @ @ (((())())()) | ^ | \ | o | ^ | \ | o | | o-o | / | o-o o-o | 6 p_1 p_2 = \ / | p_1 p_(p_1) p p_p @ @ @ (())((())()) | ^ | \ | o | | o---o | | | o---o | | | 7 p_4 = o---o | p_(p_1^2) = | | p_(p_1^p_1) p_(p^p) @ o @ ((((())))()) | ^ ^ | \ / | o | | o---o | | | o---o | o | | 8 p_1^3 = ^ ^ o---o | p_1^p_2 = / \ | | p_1^p_(p_1) p^p_p @ o @ ((((())()))) | | o-o o-o | o | | | 9 p_2^2 = ^ o---o | p_(p_1)^2 = / | | p_(p_1)^(p_1) p_p^p @ @ ((())((()))) | ^ | \ | o | | o o---o | ^ | | / o---o | o | | 16 p_1^4 = ^ o---o | p_1^(p_1^2) = / | | p_1^(p_1^p_1) p^(p^p) @ @ (((((()))))) | o-------------------------------------------------------------------------------- Further Comments: Here are a couple more pages from my notes, where it looks like I first arrived at the generating function, and also carried out some brute force enumerations of riffs. I am going to experiment with a different way of transcribing indices and powers into a plaintext. | jj | p< | j / ji | p< p< etc. | i \ ij | p< | ii ------------------------------------------------------- 1978-11-06 Generating Function | R(x) = 1 + x + 2x^2 + ... | | = 1 + x.x^0 (1 + x + 2x^2 + ...) | . 1 + x.x^1 (1 + x + 2x^2 + ...) | . 1 + x.x^2 (1 + x + 2x^2 + ...) | . 1 + x.x^2 (1 + x + 2x^2 + ...) | . ... | | = 1 + x + 2x^2 + ... | | Product over (i = 0 to infinity) of (1 + x.x^i.R(x))^R_i = R(x) ------------------------------------------------------- 1978-11-10 Brute force enumeration of R_n | 4 p's | | p | p< p_p p p | p< p< p p_p p<_p p_p_p p_p< | p< p< p< p< p< p< | | | p | p< p_p p p | p_p< p_p< p< p_p<_p p_p_p_p p_p_p< | p p_p | | | p | p< p_p p p p p | p< p< p< p< p< p< p p< | p p p_p p^p p p | | | p p_p_p p p< | p^p | Altogether, 20 riffs of weight 4. | o---------------------o---------------------o---------------------o | | 3 | 4 | 5 | | o---------------------o---------------------o---------------------| | | // // 2 | 10, 3, 1, 6 | 36, 10, 2, 3, 2, 20 | | o---------------------o---------------------o---------------------| | | | 0^1 4^1, | | | | | 1^1 3^1, | | | | | 2^2, | | | | | 4^1 0^1 | | | o---------------------o---------------------o---------------------o | | 6 | 20 | 73 | | o---------------------o---------------------o---------------------o | ------------------------------------------------------- Here are the number values of the riffs on 4 nodes: o---------------------------------------------------------------------- | | p | p< p_p p p | p< p< p p_p p<_p p_p_p p_p< | p< p< p< p< p< p< | | 2^16 2^8 2^6 2^9 2^5 2^7 | 65536 256 64 512 32 128 o---------------------------------------------------------------------- | | p | p< p_p p p | p_p< p_p< p< p_p<_p p_p_p_p p_p_p< | p p_p | | p_16 p_8 p_6 p_9 p_5 p_7 | 53 19 13 23 11 17 o---------------------------------------------------------------------- | | p | p< p_p p p p | p< p< p< p< p^p p_p p p< | p p p_p p^p p | | 3^4 3^3 5^2 7^2 | 81 27 25 49 12 18 o---------------------------------------------------------------------- | | p p_p_p p p< | p^p | | 10 14 o---------------------------------------------------------------------- For ease of reference, I include the previous table of smaller riffs and rotes, redone in the new style. o-------------------------------------------------------------------------------- | integer factorization riff r.i.f.f. rote --> in parentheses | k p's k nodes 2k+1 nodes o-------------------------------------------------------------------------------- | | 1 1 blank blank @ blank | o-------------------------------------------------------------------------------- | | o---o | | | 2 p_1^1 p @ @ (()) | o-------------------------------------------------------------------------------- | | o---o | | | o---o | 3 p_2^1 = | | p_(p_1)^1 p_p @ @ ((())()) | ^ | \ | o | | o---o | o | | ^ o---o | 4 p_1^2 = / | | p_1^p_1 p^p @ @ (((()))) | o-------------------------------------------------------------------------------- | | o---o | | | o---o | | | 5 p_3 = o---o | p_(p_2) = | | p_(p_(p_1)) p_p_p @ @ (((())())()) | ^ | \ | o | ^ | \ | o | | o-o | / | o-o o-o | 6 p_1 p_2 = \ / | p_1 p_(p_1) p p_p @ @ @ (())((())()) | ^ | \ | o | | o---o | | | o---o | | | 7 p_4 = o---o | p_(p_1^2) = | | p_(p_1^p_1) p< @ o @ ((((())))()) | p^p ^ ^ | \ / | o | | o---o | | | o---o | o | | 8 p_1^3 = ^ ^ o---o | p_1^p_2 = p_p / \ | | p_1^p_(p_1) p< @ o @ ((((())()))) | | o-o o-o | o | | | 9 p_2^2 = ^ o---o | p_(p_1)^2 = p / | | p_(p_1)^(p_1) p< @ @ ((())((()))) | p ^ | \ | o | | o o---o | ^ | | / o---o | o | | 16 p_1^4 = p ^ o---o | p_1^(p_1^2) = p< / | | p_1^(p_1^p_1) p< @ @ (((((()))))) | o-------------------------------------------------------------------------------- (later) Expanded version of first table: o-------------------------------------------------------------------------------- | integer factorization riff r.i.f.f. rote --> in parentheses | k p's k nodes 2k+1 nodes o-------------------------------------------------------------------------------- | | 1 1 blank blank @ blank | o-------------------------------------------------------------------------------- | | o---o | | | 2 p_1^1 p @ @ (()) | o-------------------------------------------------------------------------------- | | o---o | | | o---o | 3 p_2^1 = | | p_(p_1)^1 p_p @ @ ((())()) | ^ | \ | o | | o---o | o | | ^ o---o | 4 p_1^2 = / | | p_1^p_1 p^p @ @ (((()))) | o-------------------------------------------------------------------------------- | | o---o | | | o---o | | | 5 p_3 = o---o | p_(p_2) = | | p_(p_(p_1)) p_p_p @ @ (((())())()) | ^ | \ | o | ^ | \ | o | | o-o | / | o-o o-o | 6 p_1 p_2 = \ / | p_1 p_(p_1) p p_p @ @ @ (())((())()) | ^ | \ | o | | o---o | | | o---o | | | 7 p_4 = o---o | p_(p_1^2) = | | p_(p_1^p_1) p< @ o @ ((((())))()) | p^p ^ ^ | \ / | o | | o---o | | | o---o | o | | 8 p_1^3 = ^ ^ o---o | p_1^p_2 = p_p / \ | | p_1^p_(p_1) p< @ o @ ((((())()))) | | o-o o-o | o | | | 9 p_2^2 = ^ o---o | p_(p_1)^2 = p / | | p_(p_1)^(p_1) p< @ @ ((())((()))) | p ^ | \ | o | | o o---o | ^ | | / o---o | o | | 16 p_1^4 = p ^ o---o | p_1^(p_1^2) = p< / | | p_1^(p_1^p_1) p< @ @ (((((()))))) | o-------------------------------------------------------------------------------- o================================================================================ | | p | p< p p_p p | p< p<_p p< p_p< p p_p p_p_p | p< p< p< p< p< p< | | 2^16 2^9 2^8 2^7 2^6 2^5 | 65536 512 256 128 64 32 | o-------------------------------------------------------------------------------- | | p | p< p p_p p | p_p< p_p<_p p_p< p_p_p< p< p_p_p_p | p p_p | | p_16 p_9 p_8 p_7 p_6 p_5 | 53 23 19 17 13 11 | o-------------------------------------------------------------------------------- | | p^p p_p p p | p< p< p< p< | p p p^p p_p | | 3^4 3^3 7^2 5^2 | 81 27 49 25 | o-------------------------------------------------------------------------------- | | p | p p< p p< p^p p_p p p_p_p | p p^p | | 18 14 12 10 | o================================================================================ Triangle in which k-th row lists natural number values for the collection of riffs with k nodes. k | natural numbers n such that |riff(n)| = k --o------------------------------------------------ 0 | 1; 1 | 2; 2 | 3, 4; 3 | 5, 6, 7, 8, 9, 16; 4 | 10, 11, 12, 13, 14, 17, 18, 19, 23, 25, 27, | 32, 49, 53, 64, 81, 128, 256, 512, 65536; The natural number values for the riffs with at most 3 pts are as follows (@'s are roots): | o o o o | | ^ | ^ | v | v | | o o o o o o o o o | | ^ | | | ^ | ^ ^ | v | v v v | v/ | | Riff: @; @, @; @, @ @, @, @, @, @; | | Value: 2; 3, 4; 5, 6 , 7, 8, 9, 16; --------------------------------------------------- 1, 2, 3, 4, 5, 6, 7, 8, 9, 16, 10, 11, 12, 13, 14, 17, 18, 19, 23, 25, 27, 32, 49, 53, 64, 81, 128, 256, 512, 65536, --------------------------------------------------- 1; 2; 3, 4; 5, 6, 7, 8, 9, 16; 10, 11, 12, 13, 14, 17, 18, 19, 23, 25, 27, 32, 49, 53, 64, 81, 128, 256, 512, 65536; ---------------------------------------------------
A062504
TeX Array
| \(\begin{array}{l|l|r} k & P_k = \{ n : \operatorname{riff}(n) ~\text{has}~ k ~\text{nodes} \} = \{ n : \operatorname{rote}(n) ~\text{has}~ 2k + 1 ~\text{nodes} \} & |P_k| \\[10pt] 0 & \{ 1 \} & 1 \\ 1 & \{ 2 \} & 1 \\ 2 & \{ 3, 4 \} & 2 \\ 3 & \{ 5, 6, 7, 8, 9, 16 \} & 6 \\ 4 & \{ 10, 11, 12, 13, 14, 17, 18, 19, 23, 25, 27, 32, 49, 53, 64, 81, 128, 256, 512, 65536 \} & 20 \end{array}\) | 
JPEG
| 
 | ||||||||||||||||||||||||||||||
| 
 | ||||||||||||||||||||||||||||||
| 
 | ||||||||||||||||||||||||||||||
| 
 | ||||||||||||||||||||||||||||||
| 
 | 
ASCII
 Example
    * k | natural numbers n such that |riff(n)| = k
    * 0 | 1;
    * 1 | 2;
    * 2 | 3, 4;
    * 3 | 5, 6, 7, 8, 9, 16;
    * 4 | 10, 11, 12, 13, 14, 17, 18, 19, 23, 25, 27, 32, 49, 53, 64, 81, 128, 256, 512, 65536;
    * The natural number values for the riffs with at most 3 pts are as follows (x = root):
    * .................o.......o..o.......o
    * .................|.......^..|.......^
    * .................v.......|..v.......|
    * ...........o..o..o....o..o..o..o.o..o
    * ...........|..^..|....|..|..^..|.^..^
    * ...........v..|..v....v..v..|..v/...|
    * Riff:...x;.x,.x;.x,.x.x,.x,.x,.x,...x;
    * Value:..2;.3,.4;.5,..6.,.7,.8,.9,..16; 
A062537
Wiki + TeX + JPEG
| 
 
 \(a(1) ~=~ 0\) | \(\text{p}\!\) \(a(2) ~=~ 1\) | \(\text{p}_\text{p}\!\) \(a(3) ~=~ 2\) | \(\text{p}^\text{p}\!\) \(a(4) ~=~ 2\) | \(\text{p}_{\text{p}_{\text{p}}}\!\) \(a(5) ~=~ 3\) | 
| \(\text{p} \text{p}_{\text{p}}\!\) \(a(6) ~=~ 3\) | \(\text{p}_{\text{p}^{\text{p}}}\!\) \(a(7) ~=~ 3\) | \(\text{p}^{\text{p}_{\text{p}}}\!\) \(a(8) ~=~ 3\) | \(\text{p}_\text{p}^\text{p}\!\) \(a(9) ~=~ 3\) | \(\text{p} \text{p}_{\text{p}_{\text{p}}}\!\) \(a(10) ~=~ 4\) | 
| \(\text{p}_{\text{p}_{\text{p}_{\text{p}}}}\!\) \(a(11) ~=~ 4\) | \(\text{p}^\text{p} \text{p}_\text{p}\!\) \(a(12) ~=~ 4\) | \(\text{p}_{\text{p} \text{p}_{\text{p}}}\!\) \(a(13) ~=~ 4\) | \(\text{p} \text{p}_{\text{p}^{\text{p}}}\!\) \(a(14) ~=~ 4\) | \(\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}}}\!\) \(a(15) ~=~ 5\) | 
| \(\text{p}^{\text{p}^{\text{p}}}\!\) \(a(16) ~=~ 3\) | \(\text{p}_{\text{p}_{\text{p}^{\text{p}}}}\!\) \(a(17) ~=~ 4\) | \(\text{p} \text{p}_\text{p}^\text{p}\!\) \(a(18) ~=~ 4\) | \(\text{p}_{\text{p}^{\text{p}_{\text{p}}}}\!\) \(a(19) ~=~ 4\) | \(\text{p}^\text{p} \text{p}_{\text{p}_{\text{p}}}\!\) \(a(20) ~=~ 5\) | 
| \(\text{p}_\text{p} \text{p}_{\text{p}^\text{p}}\!\) \(a(21) ~=~ 5\) | \(\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!\) \(a(22) ~=~ 5\) | \(\text{p}_{\text{p}_\text{p}^\text{p}}\!\) \(a(23) ~=~ 4\) | \(\text{p}^{\text{p}_\text{p}} \text{p}_\text{p}\!\) \(a(24) ~=~ 5\) | \(\text{p}_{\text{p}_\text{p}}^\text{p}\!\) \(a(25) ~=~ 4\) | 
| \(\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!\) \(a(26) ~=~ 5\) | \(\text{p}_\text{p}^{\text{p}_\text{p}}\!\) \(a(27) ~=~ 4\) | \(\text{p}^\text{p} \text{p}_{\text{p}^\text{p}}\!\) \(a(28) ~=~ 5\) | \(\text{p}_{\text{p} \text{p}_{\text{p}_\text{p}}}\!\) \(a(29) ~=~ 5\) | \(\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!\) \(a(30) ~=~ 6\) | 
A062860
Wiki + TeX + JPEG
| 
 \(1\!\) \(a(0) ~=~ 1\) | \(\text{p}\!\) \(a(1) ~=~ 2\) | \(\text{p}_\text{p}\!\) \(a(2) ~=~ 3\) | \(\text{p}_{\text{p}_{\text{p}}}\!\) \(a(3) ~=~ 5\) | \(\text{p} \text{p}_{\text{p}_{\text{p}}}\!\) \(a(4) ~=~ 10\) | \(\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}}}\!\) \(a(5) ~=~ 15\) | \(\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!\) \(a(6) ~=~ 30\) | 
A106177
Primal Codes of Finite Partial Functions on Positive Integers
| \(\begin{array}{rcl} 1 & = & \varnothing \\ 2 & = & 1\!:\!1 \\ 3 & = & 2\!:\!1 \\ 4 & = & 1\!:\!2 \\ 5 & = & 3\!:\!1 \\ 6 & = & 1\!:\!1 ~~ 2\!:\!1 \\ 7 & = & 4\!:\!1 \\ 8 & = & 1\!:\!3 \\ 9 & = & 2\!:\!2 \\ 10 & = & 1\!:\!1 ~~ 3\!:\!1 \\ 11 & = & 5\!:\!1 \\ 12 & = & 1\!:\!2 ~~ 2\!:\!1 \\ 13 & = & 6\!:\!1 \\ 14 & = & 1\!:\!1 ~~ 4\!:\!1 \\ 15 & = & 2\!:\!1 ~~ 3\!:\!1 \\ 16 & = & 1\!:\!4 \\ 17 & = & 7\!:\!1 \\ 18 & = & 1\!:\!1 ~~ 2\!:\!2 \\ 19 & = & 8\!:\!1 \\ 20 & = & 1\!:\!2 ~~ 3\!:\!1 \end{array}\) | 
Wiki Table
| 1 | 1 | |||||||||||||||||||
| 2 | 1 | 2 | ||||||||||||||||||
| 3 | 1 | 1 | 3 | |||||||||||||||||
| 4 | 1 | 2 | 1 | 4 | ||||||||||||||||
| 5 | 1 | 3 | 1 | 1 | 5 | |||||||||||||||
| 6 | 1 | 1 | 1 | 4 | 1 | 6 | ||||||||||||||
| 7 | 1 | 5 | 2 | 9 | 1 | 1 | 7 | |||||||||||||
| 8 | 1 | 6 | 1 | 1 | 1 | 2 | 1 | 8 | ||||||||||||
| 9 | 1 | 7 | 1 | 25 | 1 | 3 | 1 | 1 | 9 | |||||||||||
| 10 | 1 | 1 | 1 | 36 | 1 | 2 | 1 | 8 | 1 | 10 | 
Wiki + TeX
Smallmatrix
| \(\begin{smallmatrix} & & & & & & & & & {\color{red}1} & & {\color{red}1} \\ & & & & & & & & {\color{red}2} & & 1 & & {\color{red}2} \\ & & & & & & & {\color{red}3} & & 1 & & 1 & & {\color{red}3} \\ & & & & & & {\color{red}4} & & 1 & & 2 & & 1 & & {\color{red}4} \\ & & & & & {\color{red}5} & & 1 & & 3 & & 1 & & 1 & & {\color{red}5} \\ & & & & {\color{red}6} & & 1 & & 1 & & 1 & & 4 & & 1 & & {\color{red}6} \\ & & & {\color{red}7} & & 1 & & 5 & & 2 & & 9 & & 1 & & 1 & & {\color{red}7} \\ & & {\color{red}8} & & 1 & & 6 & & 1 & & 1 & & 1 & & 2 & & 1 & & {\color{red}8} \\ & {\color{red}9} & & 1 & & 7 & & 1 & & 25 & & 1 & & 3 & & 1 & & 1 & & {\color{red}9} \\ {\color{red}10} & & 1 & & 1 & & 1 & & 36 & & 1 & & 2 & & 1 & & 8 & & 1 & & {\color{red}10} \end{smallmatrix}\) | 
Array
| \(\begin{array}{*{21}{c}} & & & & & & & & & {\color{red}1} & & {\color{red}1} \\ & & & & & & & & {\color{red}2} & & 1 & & {\color{red}2} \\ & & & & & & & {\color{red}3} & & 1 & & 1 & & {\color{red}3} \\ & & & & & & {\color{red}4} & & 1 & & 2 & & 1 & & {\color{red}4} \\ & & & & & {\color{red}5} & & 1 & & 3 & & 1 & & 1 & & {\color{red}5} \\ & & & & {\color{red}6} & & 1 & & 1 & & 1 & & 4 & & 1 & & {\color{red}6} \\ & & & {\color{red}7} & & 1 & & 5 & & 2 & & 9 & & 1 & & 1 & & {\color{red}7} \\ & & {\color{red}8} & & 1 & & 6 & & 1 & & 1 & & 1 & & 2 & & 1 & & {\color{red}8} \\ & {\color{red}9} & & 1 & & 7 & & 1 & & 25 & & 1 & & 3 & & 1 & & 1 & & {\color{red}9} \\ {\color{red}10} & & 1 & & 1 & & 1 & & 36 & & 1 & & 2 & & 1 & & 8 & & 1 & & {\color{red}10} \end{array}\) | 
Matrix
| \(\begin{matrix} n \circ m \\ 1 ~/~\backslash~ 1 \\ 2 ~/~ 1 ~\backslash~ 2 \\ 3 ~/~ 1 \cdot 1 ~\backslash~ 3 \\ 4 ~/~ 1 \cdot 2 \cdot 1 ~\backslash~ 4 \\ 5 ~/~ 1 \cdot 3 \cdot 1 \cdot 1 ~\backslash~ 5 \\ 6 ~/~ 1 \cdot 1 \cdot 1 \cdot 4 \cdot 1 ~\backslash~ 6 \\ 7 ~/~ 1 \cdot 5 \cdot 2 \cdot 9 \cdot 1 \cdot 1 ~\backslash~ 7 \\ 8 ~/~ 1 \cdot 6 \cdot 1 \cdot 1 \cdot 1 \cdot 2 \cdot 1 ~\backslash~ 8 \\ 9 ~/~ 1 \cdot 7 \cdot 1 \cdot 25\cdot 1 \cdot 3 \cdot 1 \cdot 1 ~\backslash~ 9 \\ 10 ~/~ 1 \cdot 1 \cdot 1 \cdot 36\cdot 1 \cdot 2 \cdot 1 \cdot 8 \cdot 1 ~\backslash~ 10 \end{matrix}\) | 
ASCII
 Example
    *                      n o m
    *                       \ /
    *                      1 . 1
    *                     \ / \ /
    *                    2 . 1 . 2
    *                   \ / \ / \ /
    *                  3 . 1 . 1 . 3
    *                 \ / \ / \ / \ /
    *                4 . 1 . 2 . 1 . 4
    *               \ / \ / \ / \ / \ /
    *              5 . 1 . 3 . 1 . 1 . 5
    *             \ / \ / \ / \ / \ / \ /
    *            6 . 1 . 1 . 1 . 4 . 1 . 6
    *           \ / \ / \ / \ / \ / \ / \ /
    *          7 . 1 . 5 . 2 . 9 . 1 . 1 . 7
    *         \ / \ / \ / \ / \ / \ / \ / \ /
    *        8 . 1 . 6 . 1 . 1 . 1 . 2 . 1 . 8
    *       \ / \ / \ / \ / \ / \ / \ / \ / \ /
    *      9 . 1 . 7 . 1 . 25. 1 . 3 . 1 . 1 . 9
    *     \ / \ / \ / \ / \ / \ / \ / \ / \ / \ /
    *   10 . 1 . 1 . 1 . 36. 1 . 2 . 1 . 8 . 1 . 10
    *
    * Primal codes of finite partial functions on positive integers:
    * 1 = { }
    * 2 = 1:1
    * 3 = 2:1
    * 4 = 1:2
    * 5 = 3:1
    * 6 = 1:1 2:1
    * 7 = 4:1
    * 8 = 1:3
    * 9 = 2:2
    * 10 = 1:1 3:1
    * 11 = 5:1
    * 12 = 1:2 2:1
    * 13 = 6:1
    * 14 = 1:1 4:1
    * 15 = 2:1 3:1
    * 16 = 1:4
    * 17 = 7:1
    * 18 = 1:1 2:2
    * 19 = 8:1
    * 20 = 1:2 3:1
A109300
JPEG
| \(\begin{array}{l} 2\!:\!1 \\ 3 \end{array}\) | \(\begin{array}{l} 1\!:\!2 \\ 4 \end{array}\) | \(\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 \\ 6 \end{array}\) | \(\begin{array}{l} 2\!:\!2 \\ 9 \end{array}\) | \(\begin{array}{l} 1\!:\!2 ~~ 2\!:\!1 \\ 12 \end{array}\) | \(\begin{array}{l} 1\!:\!1 ~~ 2\!:\!2 \\ 18 \end{array}\) | \(\begin{array}{l} 1\!:\!2 ~~ 2\!:\!2 \\ 36 \end{array}\) | 
ASCII
 Example
    * Table of Rotes and Primal Functions for Positive Integers of Rote Height 2
    *                                                                          
    * o-o     o-o       o-o   o-o o-o     o-o o-o       o-o o-o     o-o o-o o-o
    * |       |         |     |   |       |   |         |   |       |   |   |  
    * o-o   o-o     o-o o-o   o---o     o-o   o-o   o-o o---o     o-o   o---o  
    * |     |       |   |     |         |     |     |   |         |     |      
    * O     O       O===O     O         O=====O     O===O         O=====O      
    *                                                                          
    * 2:1   1:2     1:1 2:1   2:2       1:2 2:1     1:1 2:2       1:2 2:2      
    *                                                                          
    * 3     4       6         9         12          18            36           
    *                                                                           
A109301
JPEG
| \(\begin{array}{l} \varnothing \\ 1 \end{array}\) | \(\begin{array}{l} 1\!:\!1 \\ 2 \end{array}\) | \(\begin{array}{l} 2\!:\!1 \\ 3 \end{array}\) | \(\begin{array}{l} 1\!:\!2 \\ 4 \end{array}\) | \(\begin{array}{l} 3\!:\!1 \\ 5 \end{array}\) | 
| \(\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 \\ 6 \end{array}\) | \(\begin{array}{l} 4\!:\!1 \\ 7 \end{array}\) | \(\begin{array}{l} 1\!:\!3 \\ 8 \end{array}\) | \(\begin{array}{l} 2\!:\!2 \\ 9 \end{array}\) | \(\begin{array}{l} 1\!:\!1 ~~ 3\!:\!1 \\ 10 \end{array}\) | 
| \(\begin{array}{l} 5\!:\!1 \\ 11 \end{array}\) | \(\begin{array}{l} 1\!:\!2 ~~ 2\!:\!1 \\ 12 \end{array}\) | \(\begin{array}{l} 6\!:\!1 \\ 13 \end{array}\) | \(\begin{array}{l} 1\!:\!1 ~~ 4\!:\!1 \\ 14 \end{array}\) | \(\begin{array}{l} 2\!:\!1 ~~ 3\!:\!1 \\ 15 \end{array}\) | 
| \(\begin{array}{l} 1\!:\!4 \\ 16 \end{array}\) | \(\begin{array}{l} 7\!:\!1 \\ 17 \end{array}\) | \(\begin{array}{l} 1\!:\!1 ~~ 2\!:\!2 \\ 18 \end{array}\) | \(\begin{array}{l} 8\!:\!1 \\ 19 \end{array}\) | \(\begin{array}{l} 1\!:\!2 ~~ 3\!:\!1 \\ 20 \end{array}\) | 
| \(\begin{array}{l} 2\!:\!1 ~~ 4\!:\!1 \\ 21 \end{array}\) | \(\begin{array}{l} 1\!:\!1 ~~ 5\!:\!1 \\ 22 \end{array}\) | \(\begin{array}{l} 9\!:\!1 \\ 23 \end{array}\) | \(\begin{array}{l} 1\!:\!3 ~~ 2\!:\!1 \\ 24 \end{array}\) | \(\begin{array}{l} 3\!:\!2 \\ 25 \end{array}\) | 
| \(\begin{array}{l} 1\!:\!1 ~~ 6\!:\!1 \\ 26 \end{array}\) | \(\begin{array}{l} 2\!:\!3 \\ 27 \end{array}\) | \(\begin{array}{l} 1\!:\!2 ~~ 4\!:\!1 \\ 28 \end{array}\) | \(\begin{array}{l} 10\!:\!1 \\ 29 \end{array}\) | \(\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 ~~ 3\!:\!1 \\ 30 \end{array}\) | 
| \(\begin{array}{l} 11\!:\!1 \\ 31 \end{array}\) | \(\begin{array}{l} 1\!:\!5 \\ 32 \end{array}\) | \(\begin{array}{l} 2\!:\!1 ~~ 5\!:\!1 \\ 33 \end{array}\) | \(\begin{array}{l} 1\!:\!1 ~~ 7\!:\!1 \\ 34 \end{array}\) | \(\begin{array}{l} 3\!:\!1 ~~ 4\!:\!1 \\ 35 \end{array}\) | 
| \(\begin{array}{l} 1\!:\!2 ~~ 2\!:\!2 \\ 36 \end{array}\) | \(\begin{array}{l} 12\!:\!1 \\ 37 \end{array}\) | \(\begin{array}{l} 1\!:\!1 ~~ 8\!:\!1 \\ 38 \end{array}\) | \(\begin{array}{l} 2\!:\!1 ~~ 6\!:\!1 \\ 39 \end{array}\) | \(\begin{array}{l} 1\!:\!3 ~~ 3\!:\!1 \\ 40 \end{array}\) | 
| \(\begin{array}{l} 13\!:\!1 \\ 41 \end{array}\) | \(\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 ~~ 4\!:\!1 \\ 42 \end{array}\) | \(\begin{array}{l} 14\!:\!1 \\ 43 \end{array}\) | \(\begin{array}{l} 1\!:\!2 ~~ 5\!:\!1 \\ 44 \end{array}\) | \(\begin{array}{l} 2\!:\!2 ~~ 3\!:\!1 \\ 45 \end{array}\) | 
| \(\begin{array}{l} 1\!:\!1 ~~ 9\!:\!1 \\ 46 \end{array}\) | \(\begin{array}{l} 15\!:\!1 \\ 47 \end{array}\) | \(\begin{array}{l} 1\!:\!4 ~~ 2\!:\!1 \\ 48 \end{array}\) | \(\begin{array}{l} 4\!:\!2 \\ 49 \end{array}\) | \(\begin{array}{l} 1\!:\!1 ~~ 3\!:\!2 \\ 50 \end{array}\) | 
| \(\begin{array}{l} 2\!:\!1 ~~ 7\!:\!1 \\ 51 \end{array}\) | \(\begin{array}{l} 1\!:\!2 ~~ 6\!:\!1 \\ 52 \end{array}\) | \(\begin{array}{l} 16\!:\!1 \\ 53 \end{array}\) | \(\begin{array}{l} 1\!:\!1 ~~ 2\!:\!3 \\ 54 \end{array}\) | \(\begin{array}{l} 3\!:\!1 ~~ 5\!:\!1 \\ 55 \end{array}\) | 
| \(\begin{array}{l} 1\!:\!3 ~~ 4\!:\!1 \\ 56 \end{array}\) | \(\begin{array}{l} 2\!:\!1 ~~ 8\!:\!1 \\ 57 \end{array}\) | \(\begin{array}{l} 1\!:\!1 ~~ 10\!:\!1 \\ 58 \end{array}\) | \(\begin{array}{l} 17\!:\!1 \\ 59 \end{array}\) | \(\begin{array}{l} 1\!:\!2 ~~ 2\!:\!1 ~~ 3\!:\!1 \\ 60 \end{array}\) | 
ASCII
 Comment
    * Table of Rotes and Primal Functions for Positive Integers from 1 to 40
    *                                                                        
    *                                                         o-o            
    *                                                         |              
    *                             o-o             o-o         o-o            
    *                             |               |           |              
    *               o-o           o-o           o-o           o-o            
    *               |             |             |             |              
    * O             O             O             O             O              
    *                                                                        
    * { }           1:1           2:1           1:2           3:1            
    *                                                                        
    * 1             2             3             4             5              
    *                                                                        
    *                                                                        
    *                 o-o           o-o                           o-o        
    *                 |             |                             |          
    *     o-o       o-o             o-o         o-o o-o           o-o        
    *     |         |               |           |   |             |          
    * o-o o-o       o-o           o-o           o---o         o-o o-o        
    * |   |         |             |             |             |   |          
    * O===O         O             O             O             O===O          
    *                                                                        
    * 1:1 2:1       4:1           1:3           2:2           1:1 3:1        
    *                                                                        
    * 6             7             8             9             10             
    *                                                                        
    *                                                                        
    * o-o                                                                    
    * |                                                                      
    * o-o                             o-o             o-o         o-o        
    * |                               |               |           |          
    * o-o             o-o o-o     o-o o-o           o-o       o-o o-o        
    * |               |   |       |   |             |         |   |          
    * o-o           o-o   o-o     o===o-o       o-o o-o       o-o o-o        
    * |             |     |       |             |   |         |   |          
    * O             O=====O       O             O===O         O===O          
    *                                                                        
    * 5:1           1:2 2:1       6:1           1:1 4:1       2:1 3:1        
    *                                                                        
    * 11            12            13            14            15             
    *                                                                        
    *                                                                        
    *                 o-o                         o-o                        
    *                 |                           |                          
    *     o-o       o-o                           o-o               o-o      
    *     |         |                             |                 |        
    *   o-o         o-o               o-o o-o   o-o             o-o o-o      
    *   |           |                 |   |     |               |   |        
    * o-o           o-o           o-o o---o     o-o           o-o   o-o      
    * |             |             |   |         |             |     |        
    * O             O             O===O         O             O=====O        
    *                                                                        
    * 1:4           7:1           1:1 2:2       8:1           1:2 3:1        
    *                                                                        
    * 16            17            18            19            20             
    *                                                                        
    *                                                                        
    *                   o-o                                                  
    *                   |                                                    
    *       o-o         o-o       o-o o-o         o-o         o-o            
    *       |           |         |   |           |           |              
    * o-o o-o           o-o       o---o           o-o o-o     o-o o-o        
    * |   |             |         |               |   |       |   |          
    * o-o o-o       o-o o-o       o-o           o-o   o-o     o---o          
    * |   |         |   |         |             |     |       |              
    * O===O         O===O         O             O=====O       O              
    *                                                                        
    * 2:1 4:1       1:1 5:1       9:1           1:3 2:1       3:2            
    *                                                                        
    * 21            22            23            24            25             
    *                                                                        
    *                                                                        
    *                                               o-o                      
    *                                               |                        
    *         o-o       o-o               o-o       o-o               o-o    
    *         |         |                 |         |                 |      
    *     o-o o-o   o-o o-o         o-o o-o     o-o o-o           o-o o-o    
    *     |   |     |   |           |   |       |   |             |   |      
    * o-o o===o-o   o---o         o-o   o-o     o===o-o       o-o o-o o-o    
    * |   |         |             |     |       |             |   |   |      
    * O===O         O             O=====O       O             O===O===O      
    *                                                                        
    * 1:1 6:1       2:3           1:2 4:1       10:1          1:1 2:1 3:1    
    *                                                                        
    * 26            27            28            29            30             
    *                                                                        
    *                                                                        
    * o-o                                                                    
    * |                                                                      
    * o-o             o-o             o-o             o-o                    
    * |               |               |               |                      
    * o-o             o-o             o-o           o-o       o-o   o-o      
    * |               |               |             |         |     |        
    * o-o             o-o         o-o o-o           o-o       o-o o-o        
    * |               |           |   |             |         |   |          
    * o-o           o-o           o-o o-o       o-o o-o       o-o o-o        
    * |             |             |   |         |   |         |   |          
    * O             O             O===O         O===O         O===O          
    *                                                                        
    * 11:1          1:5           2:1 5:1       1:1 7:1       3:1 4:1        
    *                                                                        
    * 31            32            33            34            35             
    *                                                                        
    *                                                                        
    *                                   o-o                                  
    *                                   |                                    
    *                 o-o o-o           o-o             o-o     o-o o-o      
    *                 |   |             |               |       |   |        
    *   o-o o-o o-o o-o   o-o         o-o       o-o o-o o-o     o-o o-o      
    *   |   |   |   |     |           |         |   |   |       |   |        
    * o-o   o---o   o=====o-o     o-o o-o       o-o o===o-o   o-o   o-o      
    * |     |       |             |   |         |   |         |     |        
    * O=====O       O             O===O         O===O         O=====O        
    *                                                                        
    * 1:2 2:2       12:1          1:1 8:1       2:1 6:1       1:3 3:1        
    *                                                                        
    * 36            37            38            39            40             
    *                                                                        
    * In these Figures, "extended lines of identity" like o===o
    * indicate identified nodes and capital O is the root node.
    * The rote height in gammas is found by finding the number
    * of graphs of the following shape between the root and one
    * of the highest nodes of the tree:
    * o--o
    * |
    * o
    * A sequence like this, that can be regarded as a nonnegative integer
    * measure on positive integers, may have as many as 3 other sequences
    * associated with it. Given that the fiber of a function f at n is all
    * the domain elements that map to n, we always have the fiber minimum
    * or minimum inverse function and may also have the fiber cardinality
    * and the fiber maximum or maximum inverse function. For A109301, the
    * minimum inverse is A007097(n) = min {k : A109301(k) = n}, giving the
    * first positive integer whose rote height is n, the fiber cardinality
    * is A109300, giving the number of positive integers of rote height n,
    * while the maximum inverse, g(n) = max {k : A109301(k) = n}, giving
    * the last positive integer whose rote height is n, has the following
    * initial terms: g(0) = { } = 1, g(1) = 1:1 = 2, g(2) = 1:2 2:2 = 36,
    * while g(3) = 1:36 2:36 3:36 4:36 6:36 9:36 12:36 18:36 36:36 =
    * (2 3 5 7 13 23 37 61 151)^36 = 21399271530^36 = roughly
    * 7.840858554516122655953405327738 x 10^371. 
A111795
JPEG
| \(\begin{array}{l} \varnothing \\ 1 \end{array}\) | \(\begin{array}{l} 1\!:\!1 \\ 2 \end{array}\) | \(\begin{array}{l} 2\!:\!1 \\ 3 \end{array}\) | \(\begin{array}{l} 1\!:\!2 \\ 4 \end{array}\) | \(\begin{array}{l} 3\!:\!1 \\ 5 \end{array}\) | 
| \(\begin{array}{l} 4\!:\!1 \\ 7 \end{array}\) | \(\begin{array}{l} 1\!:\!3 \\ 8 \end{array}\) | \(\begin{array}{l} 5\!:\!1 \\ 11 \end{array}\) | \(\begin{array}{l} 1\!:\!4 \\ 16 \end{array}\) | \(\begin{array}{l} 7\!:\!1 \\ 17 \end{array}\) | 
| \(\begin{array}{l} 8\!:\!1 \\ 19 \end{array}\) | \(\begin{array}{l} 11\!:\!1 \\ 31 \end{array}\) | \(\begin{array}{l} 1\!:\!5 \\ 32 \end{array}\) | \(\begin{array}{l} 16\!:\!1 \\ 53 \end{array}\) | \(\begin{array}{l} 17\!:\!1 \\ 59 \end{array}\) | 
ASCII
 Example
    * Tables of Rotes and Primal Codes for a(1) to a(9)
    *                                                              
    *                                                 o-o          
    *                                                 |            
    *                           o-o     o-o     o-o   o-o       o-o
    *                           |       |       |     |         |  
    *             o-o     o-o   o-o   o-o       o-o   o-o     o-o  
    *             |       |     |     |         |     |       |    
    *       o-o   o-o   o-o     o-o   o-o     o-o     o-o   o-o    
    *       |     |     |       |     |       |       |     |      
    * O     O     O     O       O     O       O       O     O      
    *                                                              
    * { }   1:1   2:1   1:2     3:1   4:1     1:3     5:1   1:4    
    *                                                              
    * 1     2     3     4       5     7       8       11    16     
    *                                                              
A111800
TeX + JPEG
\(\text{Writing}~ \operatorname{prime}(i)^j ~\text{as}~ i\!:\!j, 2500 = 4 \cdot 625 = 2^2 5^4 = 1\!:\!2 ~~ 3\!:\!4 ~\text{has the following rote:}\)
|   | 
\(\text{So}~ a(2500) = a(1\!:\!2 ~~ 3\!:\!4) = a(1) + a(2) + a(3) + a(4) + 1 = 1 + 3 + 5 + 5 + 1 = 15.\)
ASCII
 Example
    * Writing prime(i)^j as i:j and using equal signs between identified nodes:
    * 2500 = 4 * 625 = 2^2 5^4 = 1:2 3:4 has the following rote:
    *                
    *       o-o   o-o
    *       |     |  
    *   o-o o-o o-o  
    *   |   |   |    
    * o-o   o---o    
    * |     |        
    * O=====O        
    *                
    * So a(2500) = a(1:2 3:4) = a(1)+a(2)+a(3)+a(4)+1 = 1+3+5+5+1 = 15. 













































































































