| Line 13: | 
Line 13: | 
|   | ===Problem===  |   | ===Problem===  | 
|   |  |   |  | 
| − | * [http://mathforum.org/kb/message.jspa?messageID=6513648 Problem posted by Mike1234 on the Discrete Math List at the Math Forum].
  | + | [http://mathforum.org/kb/message.jspa?messageID=6513648 Problem posted by Mike1234 on the Discrete Math List at the Math Forum].  | 
|   |  |   |  | 
|   | ===Solution===  |   | ===Solution===  | 
| Line 75: | 
Line 75: | 
|   |  |   |  | 
|   | ===Discussion===  |   | ===Discussion===  | 
| − | 
  |   | 
| − | <pre>
  |   | 
| − | o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
  |   | 
|   |  |   |  | 
|   | Back to the initial problem:  |   | Back to the initial problem:  | 
|   |  |   |  | 
| − | * Show that ~(p <=> q) is equivalent to (~q) <=> p  | + | * Show that ~(p <=> q) is equivalent to (~q) <=> p.  | 
|   |  |   |  | 
| − | We can translate this into logical graphs by supposing that we  | + | We can translate this into logical graphs by supposing that we have to express everything in terms of negation and conjunction, using parentheses for negation — that is, "(x)" for "not x" — and simple concatenation for conjunction — "xyz" or "x y z" for "x and y and z".  | 
| − | have to express everything in terms of negation and conjunction,  |   | 
| − | using parentheses for negation -- that is, "(x)" for "not x" --  |   | 
| − | and simple concatenation for conjunction -- "xyz" or "x y z"  |   | 
| − | for "x and y and z".  |   | 
|   |  |   |  | 
| − | In this form of representation, for historical reasons called  | + | In this form of representation, for historical reasons called the "existential interpretation" of logical graphs, we have the following expressions for basic logical operations:  | 
| − | the "existential interpretation" of logical graphs, we have  |   | 
| − | the following expressions for basic logical operations:  |   | 
|   |  |   |  | 
|   | The disjunction "x or y" is written "((x)(y))".  |   | The disjunction "x or y" is written "((x)(y))".  | 
| Line 97: | 
Line 88: | 
|   | This corresponds to the logical graph:  |   | This corresponds to the logical graph:  | 
|   |  |   |  | 
|   | + | <pre>  | 
|   |          x   y  |   |          x   y  | 
|   |          o   o  |   |          o   o  | 
| Line 103: | 
Line 95: | 
|   |            |  |   |            |  | 
|   |            O  |   |            O  | 
|   | + | </pre>  | 
|   |  |   |  | 
|   | The disjunction "x or y or z" is written "((x)(y)(z))".  |   | The disjunction "x or y or z" is written "((x)(y)(z))".  | 
| Line 108: | 
Line 101: | 
|   | This corresponds to the logical graph:  |   | This corresponds to the logical graph:  | 
|   |  |   |  | 
|   | + | <pre>  | 
|   |          x y z  |   |          x y z  | 
|   |          o o o  |   |          o o o  | 
| Line 114: | 
Line 108: | 
|   |            |  |   |            |  | 
|   |            O  |   |            O  | 
|   | + | </pre>  | 
|   |  |   |  | 
|   | Etc.  |   | Etc.  | 
|   |  |   |  | 
| − | The implication "x => y" is written "(x (y)),  | + | The implication "x => y" is written "(x (y)), which can be read "not x without y" if that helps to remember the form of expression.  | 
| − | which can be read "not x without y" if that  |   | 
| − | helps to remember the form of expression.  |   | 
|   |  |   |  | 
|   | This corresponds to the logical graph:  |   | This corresponds to the logical graph:  | 
|   |  |   |  | 
|   | + | <pre>  | 
|   |          y o  |   |          y o  | 
|   |            |  |   |            |  | 
| Line 128: | 
Line 122: | 
|   |            |  |   |            |  | 
|   |            O  |   |            O  | 
|   | + | </pre>  | 
|   |  |   |  | 
| − | Thus, the equivalence "x <=> y" has to be written somewhat  | + | Thus, the equivalence "x <=> y" has to be written somewhat inefficiently as a conjunction of to and fro implications:  "(x (y))(y (x))".  | 
| − | inefficiently as a conjunction of to and fro implications:  |   | 
| − | "(x (y))(y (x))".  |   | 
|   |  |   |  | 
|   | This corresponds to the logical graph:  |   | This corresponds to the logical graph:  | 
|   |  |   |  | 
|   | + | <pre>  | 
|   |        y o   o x  |   |        y o   o x  | 
|   |          |   |  |   |          |   |  | 
| Line 140: | 
Line 134: | 
|   |           \ /  |   |           \ /  | 
|   |            O  |   |            O  | 
|   | + | </pre>  | 
|   |  |   |  | 
| − | Putting all the pieces together, the problem given  | + | Putting all the pieces together, the problem given amounts to proving the following equation, expressed in the forms of logical graphs and parenthetical parse strings, respectively:  | 
| − | amounts to proving the following equation, expressed  |   | 
| − | in parse string and logical graph forms, respectively:  |   | 
|   |  |   |  | 
| − | * Show that ~(p <=> q) is equivalent to (~q) <=> p  | + | * Show that ~(p <=> q) is equivalent to (~q) <=> p.  | 
|   |  |   |  | 
|   | + | <pre>  | 
|   |        q o   o p           q o  |   |        q o   o p           q o  | 
|   |          |   |               |  |   |          |   |               |  | 
| Line 156: | 
Line 150: | 
|   |  |   |  | 
|   | ( (p (q)) (q (p)) ) = (p ( (q) )) ((p)(q))  |   | ( (p (q)) (q (p)) ) = (p ( (q) )) ((p)(q))  | 
|   | + | </pre>  | 
|   |  |   |  | 
| − | No kidding ...  | + | No kidding …  | 
| − |    |   | 
| − | o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o 
  |   | 
| − | </pre>
  |   |