MyWikiBiz, Author Your Legacy — Friday October 31, 2025
Jump to navigationJump to search
	
	
	
		1 byte added
	
		,  12:31, 29 July 2008
	
 
| Line 990: | Line 990: | 
|  | \end{matrix}</math> |  | \end{matrix}</math> | 
|  |  |  |  | 
| − | This partition may also be expressed in the follwing symbolic form: | + | This partition may also be expressed in the following symbolic form: | 
|  | : <math>\begin{matrix} |  | : <math>\begin{matrix} | 
|  | X^2 & \cong & \operatorname{diag}(X) & + & 2 \tbinom{X}{2}. |  | X^2 & \cong & \operatorname{diag}(X) & + & 2 \tbinom{X}{2}. | 
| Line 1,011: | Line 1,011: | 
|  | \end{matrix}</math> |  | \end{matrix}</math> | 
|  |  |  |  | 
| − | We can now use the features ind<font face="lucida calligraphy">X</font> = {d''x''<sub>''i''</sub>} = {d''x''<sub>1</sub>, …, d''x''<sub>''n''</sub>} to classify the paths of ('''B''' → ''X'') by way of the pairs in''X''<sup>2</sup>. If ''X'' <math>\cong</math> '''B'''<sup>''n''</sup> then a path in ''X'' has the form ''q'' : ('''B''' → '''B'''<sup>''n''</sup>) <math>\cong</math> '''B'''<sup>''n''</sup> × '''B'''<sup>''n''</sup> <math>\cong</math> '''B'''<sup>2''n''</sup> <math>\cong</math> ('''B'''<sup>2</sup>)<sup>''n''</sup>.  Intuitively, we want to map this ('''B'''<sup>2</sup>)<sup>''n''</sup> onto ''D''<sup>''n''</sup> by mapping each component '''B'''<sup>2</sup> onto a copy of '''D'''.  But in our current situation "'''D'''" is just a name we give, or an accidental quality we attribute, to coefficient values in '''B''' when they are attached to features in d<font face="lucida calligraphy">X</font>. | + | We may now use the features in <math>\operatorname{d}\mathcal{X} = \{ \operatorname{d}x_i \} = \{ \operatorname{d}x_1, \ldots, \operatorname{d}x_n \}</math> to classify the paths of <math>(\mathbb{B} \to X)</math> by way of the pairs in <math>X^2.\!</math>  If ''X'' <math>\cong</math> '''B'''<sup>''n''</sup> then a path in ''X'' has the form ''q'' : ('''B''' → '''B'''<sup>''n''</sup>) <math>\cong</math> '''B'''<sup>''n''</sup> × '''B'''<sup>''n''</sup> <math>\cong</math> '''B'''<sup>2''n''</sup> <math>\cong</math> ('''B'''<sup>2</sup>)<sup>''n''</sup>.  Intuitively, we want to map this ('''B'''<sup>2</sup>)<sup>''n''</sup> onto ''D''<sup>''n''</sup> by mapping each component '''B'''<sup>2</sup> onto a copy of '''D'''.  But in our current situation "'''D'''" is just a name we give, or an accidental quality we attribute, to coefficient values in '''B''' when they are attached to features in d<font face="lucida calligraphy">X</font>. | 
|  |  |  |  | 
|  | Therefore, define d''x''<sub>''i''</sub> : ''X''<sup>2</sup> → '''B''' such that: |  | Therefore, define d''x''<sub>''i''</sub> : ''X''<sup>2</sup> → '''B''' such that: |